11th Lecture: 15/2

Theorem 11.1. (Chinese Remainder Theorem) Let $n \in \mathbb{Z}_+$ with unique prime factorisation $n = \prod_{i=1}^{k} p_i^{\alpha_i}$. Then there is an isomphism of rings

$$\mathbb{Z}_n \cong \prod_{i=1}^k \mathbb{Z}_{p_i^{\alpha_i}}.$$
(11.1)

PROOF: There is a natural map

$$\phi: \mathbb{Z}_n \to \prod_{i=1}^k \mathbb{Z}_{p_i^{\alpha_i}}$$

$$a \pmod{n} \mapsto (a \pmod{p_1^{\alpha_1}}, \dots, a \pmod{p_k^{\alpha_k}}).$$

Moreover, it is clear that ϕ is a ring homomorphism, i.e.: that it respects the operations of addition and multiplication in the respective rings. It thus remains to show that ϕ is a bijection.

Injectivity: Suppose $\phi(a \pmod{n}) = \phi(b \pmod{n})$. Now two elements of a direct product of rings are equal if and only if they are equal in every component. Hence $a \pmod{p_i^{\alpha_i}} = b \pmod{p_i^{\alpha_i}}$, for each $i = 1, \ldots, k$. In other words, a - b is divisible by $p_i^{\alpha_i}$ for each *i*. But then, by FTA, a - b must be divisible by $\prod_{i=1}^k p_i^{\alpha_i}$, that is, a - b is divisible by *n* and so $a \pmod{n} = b \pmod{n}$, v.s.v.

Surjectivity: We need to show that, for arbitrary integers a_1, a_2, \ldots, a_k there exists an integer x satisfying the system of congruences

$$x \equiv a_i \pmod{p_i^{\alpha_i}}, \quad i = 1, \dots, k.$$

More generally, we will show that, for arbitrary a_1, \ldots, a_k and arbitrary n_1, \ldots, n_k satisfying¹ GCD $(n_i, n_j) = 1 \forall i \neq j$, there exists an integer x satisfying the system of congruences

$$x \equiv a_i \pmod{n_i}, \quad i = 1, \dots, k. \tag{11.2}$$

Indeed, x can be given by an explicit formula, namely

1.

$$x \equiv \sum_{i=1}^{k} a_i b_i N_i \pmod{N},\tag{11.3}$$

where

$$N = \prod_{i=1}^{\kappa} n_i, \quad N_i = \frac{N}{n_i} = \prod_{j \neq i} n_j, \quad b_i \equiv N_i^{-1} \; (\text{mod } n_i). \tag{11.4}$$

To see that this formula is correct

- First note that, since the n_i are pairwise relatively prime, one also has $GCD(N_i, n_i) = 1$ for each *i* and hence the numbers b_i are well-defined, by Proposition 10.11.

- Now substitute these into (11.3). For fixed *i*, each of the N_j , $j \neq i$, will contain n_i as a factor and hence be divisible by n_i . Hence each of the terms $a_j b_j N_j$, for $j \neq i$, will contribute zero modulo n_i . This leaves us with $x \equiv a_i b_i N_i \equiv a_i (N_i^{-1} N_i) \equiv a_i \pmod{n_i}$, v.s.v.

¹The numbers n_i are said to be *pairwise relatively prime*.

Remark 11.2. The "hard part" of the above proof is surjectivity. For this reason, the term "Chinese Remainder Theorem" sometimes just refers to the statement that a system of congruences (11.2) has a unique solution modulo $\prod_i n_i$ given by (11.3).

Example 11.3. I did an example in class, but I'll be doing another one in Demo4, so look there instead.

Remark 11.4. If the n_i are not pairwise relatively prime, then the system (11.2) may or may not have a solution, depending on the values of the a_i . For example, take $n_1 = 4$, $n_2 = 6$. Then $\text{GCD}(n_1, n_2) = 2$, so any x satisfying (11.2) must in particular satisfy $x \equiv a_1 \equiv a_2 \pmod{2}$. In other words, a necessary condition for a solution to exist is that $a_1 \equiv a_2 \pmod{2}$. One can check (it follows from Theorem 11.1) that this condition is also sufficient. Similar remarks apply to arbitrary systems (11.2), but we hop over the technical details.

Corollary 11.5. Let $n \in \mathbb{Z}_+$ with unique prime factorisation $n = \prod_{i=1}^k p_i^{\alpha_i}$. Then there is an isomphism of groups

$$\mathbb{Z}_n^{\times} \cong \prod_{i=1}^k \mathbb{Z}_{p_i^{\alpha_i}}^{\times}.$$
(11.5)

PROOF: Follows immediately from Theorem 11.1 and eq. (10.1).

Definition 11.6. The *Euler-phi function* is the function $\phi : \mathbb{Z}_+ \to \mathbb{Z}_+$ given by

$$\phi(n) = |\mathbb{Z}_n^{\times}| = |\{a \in \mathbb{Z} : 0 \le a < n \text{ and } GCD(a, n) = 1\}|.$$

Note that, for a prime power p^{α} one has $GCD(a, p^{\alpha}) > 1$ if and only if a is a multiple of p. Hence

$$\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1} = p^{\alpha} \left(1 - \frac{1}{p} \right).$$
(11.6)

From this and (11.5) it follows that for arbitrary $n \in \mathbb{Z}_+$,

$$\phi(n) = |\mathbb{Z}_n^{\times}| = \left| \prod_{i=1}^k \mathbb{Z}_{p_i^{\alpha_i}}^{\times} \right| = \prod_{i=1}^k |\mathbb{Z}_{p_i^{\alpha_i}}^{\times}|$$
$$= \prod_{i=1}^k \phi(p_i^{\alpha_i}) = \prod_{i=1}^k p_i^{\alpha_i} \left(1 - \frac{1}{p_i} \right) = \left[\prod_{i=1}^k p_i^{\alpha_i} \right] \left[\prod_{i=1}^k \left(1 - \frac{1}{p_i} \right) \right] = n \cdot \prod_{i=1}^k \left(1 - \frac{1}{p_i} \right).$$

In other words,

$$\frac{\phi(n)}{n} = \prod_{p \mid n} \left(1 - \frac{1}{p} \right), \tag{11.7}$$

where the product is taken over the *distinct* primes which divide *n*.

In particular, this means one can easily compute $\phi(n)$ if one knows the factorisation of n. I believe it is still an open problem whether the converse is true in general². See Homework 2, Exercise 7 for the case of $n = p_1 p_2$, a product of two distinct primes.

Theorem 11.7. (Euler's Theorem) Let n be a positive integer and a any integer satisfying GCD(a, n) = 1. Then

$$a^{\phi(n)} \equiv 1 \pmod{n}. \tag{11.8}$$

PROOF: Follows immediately from Corollary 9.15 applied to the group $G = \mathbb{Z}_n^{\times}$.

Computing a^b (mod c). This is the core computation performed, for example, in the implementation of RSA cryptography (see Lecture 12). The positive integers a, b, c should be thought of as being *very large*, so large that the "stupid" way of doing the computation - first computing the integer a^b explicitly and then dividing by c and computing the remainder - is unfeasible. There are two basic options for a feasible computation:

Method 1: Use Euler's Theorem. The drawback with this is that it first requires one to compute $\phi(c)$ which, unless you're lucky, in turn requires you to factorise c. A second problem is that Euler's Theorem assumes that GCD(a, c) = 1 though, as we will show, one can get around this. Factorisation of c is thus the main sticking point in general, but if one somehow knows $\phi(c)$, this is the most efficient way of performing the computation.

Method 2: Repeated Squaring Algorithm. This is state-of-the-art for a method which always works. The main point about it is that it allows one to obtain the correct answer without ever having to work with numbers that are bigger than c^2 .

I began (but did not finish) an example in class, but since I'll be doing one in Demo4 anyway, you can look there for a worked example. Note in particular how one gets around the situation where GCD(a, c) > 1.

Remark 11.8. One can use (11.5) to obtain the exact algebraic structure of the abelian group \mathbb{Z}_n^{\times} as a direct sum of finite cyclic groups of prime power size, assuming one first can factorise n. To do so requires three additional facts, whose proofs I will skip over due to time constraints.

Fact 11.9. Let p be an odd prime and n a positive integer. Then the group $\mathbb{Z}_{p^n}^{\times}$ is cyclic.

Fact 11.10. $\mathbb{Z}_2^{\times} \cong C_1$, $\mathbb{Z}_4^{\times} \cong C_2$ and, for $n \ge 3$, $\mathbb{Z}_{2^n}^{\times} \cong C_2 \oplus C_{2^{n-2}}$.

Fact 11.11. Let m, n be positive integers. Then $C_m \oplus C_n \cong C_{mn}$ if and only if GCD(m, n) = 1.

 $^{^{2}}$ To state the converse problem precisely, one must define precisely what "easily" means. The usual definition is "in polynomial time", but I will leave it to you to find out what that means if you are interested.

Example 11.12. We determine the structure of $\mathbb{Z}_{624}^{\times}$. First we factorise:

$$624 = 2^4 \cdot 3 \cdot 13$$

Hence, by (11.5),

$$\mathbb{Z}_{624}^{\times} \cong \mathbb{Z}_{16}^{\times} \times \mathbb{Z}_{3}^{\times} \times \mathbb{Z}_{13}^{\times}.$$
- Fact 11.10 implies that $\mathbb{Z}_{3}^{\times} \cong C_{2}$ and $\mathbb{Z}_{13}^{\times} \cong C_{12}$.
- Fact 11.11 implies that $\mathbb{Z}_{16}^{\times} \cong C_{2} \oplus C_{4}$.
(11.9)

- Fact 11.12 implies in turn that $C_{12} \cong C_3 \oplus C_4$.

Substituting everything into (11.9) gives

$$\mathbb{Z}_{624}^{\times} \cong (C_2 \oplus C_4) \oplus C_2 \oplus (C_3 \oplus C_4) \cong (C_2 \oplus C_2) \oplus C_3 \oplus (C_4 \oplus C_4).$$

One can think of the RHS as being the "prime factorisation" of the abelian group $\mathbb{Z}_{624}^{\times}$. More generally, every finite abelian group has a "unique prime factorisation" in some sense - the theorem which makes this precise is called the *Fundamental Theorem of Finite Abelian Groups*. Look it up if you're interested !

Remark 11.13. By Fact 11.10, for each prime p the multiplicative group \mathbb{Z}_p^{\times} of non-zero elements in the finite field \mathbb{Z}_p is cyclic. A generator of this group is called a *primitive root modulo* p. Thus, $a \in \mathbb{Z}$ is a primitive root modulo p if and only if $a^k \not\equiv 1 \pmod{p}$ for any $1 \leq k .$

Note that, by Proposition 10.9, in a cyclic group of size t there are $\phi(t)$ generators. Hence, there are $\phi(p-1)$ primitive roots modulo p. Typically, this is quite a large fraction of the p-1 group elements (see (11.7)). However, when p is large, to actually *find* a primitive root, by anything other than an exhaustive search, is a non-trivial problem. See Homework 2, Exercise 5(f) for a worked example when p is small.

Indeed, some easy-to-state questions concerning primitive roots seem to have very deep "roots" (excuse the pun !). We mention the most famous problem:

Artin's Conjecture. Let a be an integer which is not a perfect square. Then there are infinitely many primes p such that a is a primitive root modulo p.

Note that the condition that a not be a perfect square is necessary. This is because, for any odd p, the group \mathbb{Z}_p^{\times} has even size p-1. Hence, if $a = b^2$ then $a^{(p-1)/2} = b^{p-1} \equiv 1 \pmod{p}$.

There is no single integer *a* for which Artin's Conjecture has been proven. It is, however, known that Artin's Conjecture would follow from a certain version of the *Generalized Riemann Hypothesis*. The Riemann Hypothesis, even in its classical formulation (which is not enough for Artin's Conjecture) for the zeta function $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$, is probably the most significant open problem in all of mathematics.