
11th Lecture: 15/2

Theorem 11.1. (Chinese Remainder Theorem) Let n ∈ Z+ with unique prime fac-

torisation n =
∏k

i=1 p
αi

i . Then there is an isomphism of rings

Zn
∼=

k
∏

i=1

Zp
αi

i

. (11.1)

PROOF: There is a natural map

φ : Zn →

k
∏

i=1

Zp
αi

i

a (mod n) 7→ (a (mod pα1

1 ), . . . , a (mod pαk

k )).

Moreover, it is clear that φ is a ring homomorphism, i.e.: that it respects the operations

of addition and multiplication in the respective rings. It thus remains to show that φ is

a bijection.

Injectivity: Suppose φ(a (mod n)) = φ(b (mod n)). Now two elements of a direct

product of rings are equal if and only if they are equal in every component. Hence

a (mod pαi

i ) = b (mod pαi

i ), for each i = 1, . . . , k. In other words, a − b is divisible

by pαi

i for each i. But then, by FTA, a − b must be divisible by
∏k

i=1 p
α
i , that is, a − b

is divisible by n and so a (mod n) = b (mod n), v.s.v.

Surjectivity: We need to show that, for arbitrary integers a1, a2, . . . , ak there exists

an integer x satisfying the system of congruences

x ≡ ai (mod pαi

i ), i = 1, . . . , k.

More generally, we will show that, for arbitrary a1, . . . , ak and arbitrary n1, . . . , nk

satisfying1 GCD(ni, nj) = 1 ∀ i 6= j, there exists an integer x satisfying the system of

congruences

x ≡ ai (mod ni), i = 1, . . . , k. (11.2)

Indeed, x can be given by an explicit formula, namely

x ≡

k
∑

i=1

aibiNi (mod N), (11.3)

where

N =
k
∏

i=1

ni, Ni =
N

ni

=
∏

j 6=i

nj , bi ≡ N−1
i (mod ni). (11.4)

To see that this formula is correct

- First note that, since the ni are pairwise relatively prime, one also has GCD(Ni, ni) =
1 for each i and hence the numbers bi are well-defined, by Proposition 10.11.

- Now substitute these into (11.3). For fixed i, each of the Nj , j 6= i, will con-

tain ni as a factor and hence be divisible by ni. Hence each of the terms ajbjNj , for

j 6= i, will contribute zero modulo ni. This leaves us with x ≡ aibiNi ≡ ai(N
−1
i Ni) ≡

ai (mod ni), v.s.v.

1The numbers ni are said to be pairwise relatively prime.
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Remark 11.2. The “hard part” of the above proof is surjectivity. For this reason,

the term “Chinese Remainder Theorem” sometimes just refers to the statement that a

system of congruences (11.2) has a unique solution modulo
∏

i ni given by (11.3).

Example 11.3. I did an example in class, but I’ll be doing another one in Demo4,

so look there instead.

Remark 11.4. If the ni are not pairwise relatively prime, then the system (11.2) may or

may not have a solution, depending on the values of the ai. For example, take n1 = 4,

n2 = 6. Then GCD(n1, n2) = 2, so any x satisfying (11.2) must in particular satisfy

x ≡ a1 ≡ a2 (mod 2). In other words, a necessary condition for a solution to exist is

that a1 ≡ a2 (mod 2). One can check (it follows from Theorem 11.1) that this condition

is also sufficient. Similar remarks apply to arbitrary systems (11.2), but we hop over the

technical details.

Corollary 11.5. Let n ∈ Z+ with unique prime factorisation n =
∏k

i=1 p
αi

i . Then

there is an isomphism of groups

Z
×
n
∼=

k
∏

i=1

Z
×
p
αi

i

. (11.5)

PROOF: Follows immediately from Theorem 11.1 and eq. (10.1).

Definition 11.6. The Euler-phi function is the function φ : Z+ → Z+ given by

φ(n) = |Z×
n | = |{a ∈ Z : 0 ≤ a < n and GCD(a, n) = 1}|.

Note that, for a prime power pα one has GCD(a, pα) > 1 if and only if a is a multiple

of p. Hence

φ(pα) = pα − pα−1 = pα
(

1−
1

p

)

. (11.6)

From this and (11.5) it follows that for arbitrary n ∈ Z+,

φ(n) = |Z×
n | =

∣

∣

∣

∣

∣

k
∏

i=1

Z
×
p
αi

i

∣

∣

∣

∣

∣

=
k
∏

i=1

|Z×
p
αi

i

|

=
k
∏

i=1

φ(pαi

i ) =
k
∏

i=1

pαi

i

(

1−
1

pi

)

=

[

k
∏

i=1

pαi

i

][

k
∏

i=1

(

1−
1

pi

)

]

= n ·

k
∏

i=1

(

1−
1

pi

)

.

In other words,

φ(n)

n
=

∏

p |n

(

1−
1

p

)

, (11.7)

where the product is taken over the distinct primes which divide n.
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In particular, this means one can easily compute φ(n) if one knows the factorisation

of n. I believe it is still an open problem whether the converse is true in general2. See

Homework 2, Exercise 7 for the case of n = p1p2, a product of two distinct primes.

Theorem 11.7. (Euler’s Theorem) Let n be a positive integer and a any integer satis-

fying GCD(a, n) = 1. Then

aφ(n) ≡ 1 (mod n). (11.8)

PROOF: Follows immediately from Corollary 9.15 applied to the group G = Z
×
n .

Computing ab (mod c). This is the core computation performed, for example, in the

implementation of RSA cryptography (see Lecture 12). The positive integers a, b, c
should be thought of as being very large, so large that the “stupid” way of doing the

computation - first computing the integer ab explicitly and then dividing by c and com-

puting the remainder - is unfeasible. There are two basic options for a feasible compu-

tation:

Method 1: Use Euler’s Theorem. The drawback with this is that it first requires one

to compute φ(c) which, unless you’re lucky, in turn requires you to factorise c. A sec-

ond problem is that Euler’s Theorem assumes that GCD(a, c) = 1 though, as we will

show, one can get around this. Factorisation of c is thus the main sticking point in gen-

eral, but if one somehow knows φ(c), this is the most efficient way of performing the

computation.

Method 2: Repeated Squaring Algorithm. This is state-of-the-art for a method which

always works. The main point about it is that it allows one to obtain the correct answer

without ever having to work with numbers that are bigger than c2.

I began (but did not finish) an example in class, but since I’ll be doing one in Demo4

anyway, you can look there for a worked example. Note in particular how one gets

around the situation where GCD(a, c) > 1.

Remark 11.8. One can use (11.5) to obtain the exact algebraic structure of the abelian

group Z
×
n as a direct sum of finite cyclic groups of prime power size, assuming one first

can factorise n. To do so requires three additional facts, whose proofs I will skip over

due to time constraints.

Fact 11.9. Let p be an odd prime and n a positive integer. Then the group Z
×
pn is

cyclic.

Fact 11.10. Z×
2
∼= C1, Z×

4
∼= C2 and, for n ≥ 3, Z×

2n
∼= C2 ⊕ C2n−2 .

Fact 11.11. Let m, n be positive integers. Then Cm ⊕ Cn
∼= Cmn if and only if

GCD(m, n) = 1.

2To state the converse problem precisely, one must define precisely what “easily” means. The usual

definition is “in polynomial time”, but I will leave it to you to find out what that means if you are

interested.
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Example 11.12. We determine the structure of Z×
624. First we factorise:

624 = 24 · 3 · 13.

Hence, by (11.5),

Z
×
624

∼= Z
×
16 × Z

×
3 × Z

×
13. (11.9)

- Fact 11.10 implies that Z×
3
∼= C2 and Z

×
13

∼= C12.

- Fact 11.11 implies that Z×
16

∼= C2 ⊕ C4.

- Fact 11.12 implies in turn that C12
∼= C3 ⊕ C4.

Substituting everything into (11.9) gives

Z
×
624

∼= (C2 ⊕ C4)⊕ C2 ⊕ (C3 ⊕ C4) ∼= (C2 ⊕ C2)⊕ C3 ⊕ (C4 ⊕ C4).

One can think of the RHS as being the “prime factorisation” of the abelian group Z
×
624.

More generally, every finite abelian group has a “unique prime factorisation” in some

sense - the theorem which makes this precise is called the Fundamental Theorem of

Finite Abelian Groups. Look it up if you’re interested !

Remark 11.13. By Fact 11.10, for each prime p the multiplicative group Z
×
p of non-zero

elements in the finite field Zp is cyclic. A generator of this group is called a primitive

root modulo p. Thus, a ∈ Z is a primitive root modulo p if and only if ak 6≡ 1 (mod p)
for any 1 ≤ k < p− 1.

Note that, by Proposition 10.9, in a cyclic group of size t there are φ(t) generators.

Hence, there are φ(p− 1) primitive roots modulo p. Typically, this is quite a large frac-

tion of the p− 1 group elements (see (11.7)). However, when p is large, to actually find

a primitive root, by anything other than an exhaustive search, is a non-trivial problem.

See Homework 2, Exercise 5(f) for a worked example when p is small.

Indeed, some easy-to-state questions concerning primitive roots seem to have very

deep “roots” (excuse the pun !). We mention the most famous problem:

Artin’s Conjecture. Let a be an integer which is not a perfect square. Then there

are infinitely many primes p such that a is a primitive root modulo p.

Note that the condition that a not be a perfect square is necessary. This is be-

cause, for any odd p, the group Z
×
p has even size p − 1. Hence, if a = b2 then

a(p−1)/2 = bp−1 ≡ 1 (mod p).

There is no single integer a for which Artin’s Conjecture has been proven. It is, how-

ever, known that Artin’s Conjecture would follow from a certain version of the Gener-

alized Riemann Hypothesis. The Riemann Hypothesis, even in its classical formulation

(which is not enough for Artin’s Conjecture) for the zeta function ζ(s) =
∑∞

n=1 1/n
s,

is probably the most significant open problem in all of mathematics.


