
10th Lecture: 15/2

Definition 10.1. Let G1, G2, . . . , Gn be groups. The direct product G =
∏

n

i=1
Gi is

the group such that, the underlying set is the Cartesian product of the Gi and the group

operation is defined componentwise, i.e.:

(g1, g2, . . . , gn)(h1 h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn).

In the case of abelian Gi it is common to employ additive notation and write G =
⊕n

i=1Gi and

(g1, g2, . . . , gn)⊕ (h1 h2, . . . , hn) = (g1 + h1, g2 + h2, . . . , gn + hn).

Note that a direct product of groups is abelian if and only if every factor is so.

Definition 10.2. Let G and H be groups. A function φ : G → H is called a (group)

homomorphism if

φ(g1g2) = φ(g1)φ(g2) ∀ g1, g2 ∈ G.

If, moreover, φ is a bijective function then it is said to be a (group) isomorphism. We

write G ∼= H if there exists an isomorphism φ : G → H and say that G and H are

isomorphic. Clearly, isomorphism is an equivalence relation on groups. Isomorphic

groups are considered “the same”, from the point of view of abstract algebra.

Example 10.3. In the notation of Exercise 6, Demo3.pdf, let H9 be the subgroup of

D4 generated by a 180-degree rotation and a reflection in the vertical bisector. Then

H9 =< a > × < b > is the direct product of two cyclic groups of size 2, gener-

ated by the rotation and the reflection separately. Moreover, H9
∼= K, where K is the

group of symmetries of a non-square rectangle, the so-called Klein-4 group. For one

has K =< c > × < d >, where c and d represent reflection in the vertical and hori-

zontal bisectors respectively.

One can make definitions analogous to 10.1 and 10.2 for rings.

Definition 10.4. Let R1, R2, . . . , Rn be rings. The direct product R =
∏

n

i=1
Ri is

the ring such that, the underlying set is the Cartesian product of the Ri and the ring

operations are defined componentwise, i.e.:

(r1, r2, . . . , rn) + (s1 s2, . . . , sn) = (r1 + s1, r2 + s2, . . . , rn + sn),

(r1, r2, . . . , rn) · (s1 s2, . . . , sn) = (r1 · s1, r2 · s2, . . . , rn · sn).

Note that a direct product of rings is commutative (resp. has a unity) if and only if

every factor is so (resp. has one). In the latter case, the unity in the direct product is

(1, 1, . . . , 1).

Definition 10.5. Let R and S be rings. A function φ : R → S is called a (ring)

homomorphism if

φ(r1 + r2) = φ(r1) + φ(r2), φ(r1r2) = φ(r1)φ(r2), ∀ r1, r2 ∈ R.
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If, moreover, φ is a bijective function then it is said to be a (ring) isomorphism. We

write R ∼= S if there exists an isomorphism φ : R → S and say that R and S are

isomorphic. Clearly, isomorphism is an equivalence relation on rings. Isomorphic rings

are considered “the same”, from the point of view of abstract algebra.

We need one further concept before turning to modular arithmetic.

Definition 10.6. Let R be a ring with unity. The unit group R× of R is the set of

invertible elements in R with the ring multiplication as the group operation, i.e.:

R× = {a ∈ R : ∃ b ∈ R with ab = ba = 1}.

Note that R× is indeed a group since

(i) It is closed under multiplication: (xy)−1 = y−1x−1

(ii) It contains the identity: 1 · 1 = 1
(iii) It contains inverses: (x−1)−1 = x.

Examples 10.7. (i) Z× = {1} is the trivial ring.

(ii) For any division ring D, D× = D\{0}. In particular, this is true of any field, so in

particular of Q, R or C.

(iii) If R = Mn(R), then R× = GLn(R). One can replace R by Q or C, more generally

by any field.

(iv) If R =
∏

n

i=1
Ri is a direct product of rings, then as groups

R× =
n∏

i=1

R×

i
. (10.1)

This is easy to see: an element (r1, . . . , rn) ∈ R is invertible if and only if each

component is so and (r1, . . . , rn)
−1 = (r−1

1 , . . . , r−1
n
).

Modular Arithmetic. Let n ∈ Z+ and a, b ∈ Z. We adopt the standard notation

a ≡ b (mod n) ⇔ n | a− b,

and say that a is congruent to b modulo n.

It is easy to see that, for any fixed n ∈ Z+, congruence modulo n is an equivalence

relation on Z:

Reflexivity: a ≡ a ⇔ n | a− a ⇔ n | 0, which is obviously true

Symmetry: a ≡ b ⇔ n | a− b ⇔ n | b− a ⇔ b ≡ a
Transitivity: (a ≡ b) ∧ (b ≡ c) ⇒ (n | a− b) ∧ (n | b− c) ⇒ n | (a− b) + (b− c) ⇒

n | a− c ⇒ a ≡ c.

There are n equivalence classes, corresponding to the n possible remainders 0, 1, . . . ,
n − 1 upon division by n. The set of equivalence classes is denoted Zn. It is common

to write Zn = {0, 1, . . . , n− 1}, i.e.: to be a bit sloppy and not distinguish between a

number and the equivalence class it represents.

The next result yields the fundamental algebraic properties of the set Zn:
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Proposition 10.8. Let n ∈ Z+ and let a, b, c, d ∈ Z satisfy a ≡ b (mod n) and

c ≡ d (mod n). Then a+ c ≡ b+ d (mod n) and ac ≡ bd (mod n).

PROOF:

a ≡ b (mod n) ⇒ n | a− b,

c ≡ d (mod n) ⇒ n | c− d.

Then, on the one hand,

n | (a− b) + (c− d) ⇒ n | (a+ c)− (b+ d) ⇒ a+ c ≡ b+ d (mod n), v.s.v.

and, on the other hand,

[n | c(a−b)]∧[n | b(c−d)] ⇒ n | c(a−b)+b(c−d) ⇒ n | ac−bd ⇒ ac ≡ bd (mod n), v.s.v.

The Proposition implies that addition and multiplication of congruence classes mod n
are well-defined, hence that (Zn, +, ·) is a ring for any n ∈ Z+. These are the simplest

examples of finite rings, since |Zn| = n as noted previously. Obviously the ring Zn

is commutative (since ordinary multiplication of numbers is so) and contains a unity,

namely (the class of) 1. We now note two further basic properties:

Proposition 10.9. The abelian group (Zn, +) is cyclic and is generated by an ele-

ment a (mod n) if and only if GCD(a, n) = 1.

PROOF: Let a ∈ Z. Then a (mod n) generates all of Zn under addition if and only

if there is no positive integer k < n such that ka ≡ 0 (mod n). But ka ≡ 0 ⇔ n | ka.

From FTA it follows that the smallest positive integer k satisfying this is k = n/d,

where d = GCD(a, n). The Proposition follows.

Notation 10.10. In group theory, Zn is often used to denote a generic cyclic group

of size n. Hence, when seeing this notation, one must always decide from the context

wheher it refers to a generic cyclic group of size n or to the specific group of congruence

classes modulo n under addition. An alternative notation for the generic cyclic group is

Cn.

Proposition 10.11.

Z×

n
= {a (mod n) : GCD(a, n) = 1}.

In particular, Zn is a field if and only if n is prime. PROOF: a is invertible mod n if and

only if there exists an integer x such that ax ≡ 1 (mod n). Now,

ax ≡ 1 (mod n) ⇔ n | ax− 1 ⇔ ∃ y ∈ Z : ax− 1 = ny.

To summarise, a is invertible mod n if and only if there exist integers x, y satisfying

ax− ny = 1. But by Bezout’s Lemma (Proposition 7.8), such x and y exist if and only

if GCD(a, n) = 1, v.s.v.

Remark 10.12. The proof of Proposition 10.11 tells us how to actually find multi-

pliciative inverses in Zn, namely via Euclid’s algorithm. I did examples in class, but
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will do another one in Demo4, so look there instead.

We now have everything in place to prove our two main results, the Chinese Remain-

der Theorem and the Euler/Fermat theorem. We do so in the next lecture.


