
14th Lecture: 23/2

Group Actions on Sets. The notion of a group acting on a set generalises the notion

of a group itself. This more general viewpoint has, for example, some combinatorial

applications.

Definition 14.1. Let G be a group and S a set. A (right) action of G on S is a map

S ×G → G,

(s, g) 7→ sg

satisfying the following two axioms:

(1) s1G = s ∀ s ∈ S
(2) s(gh) = (sg)h ∀ g, h ∈ G, ∀ s ∈ S.

Remark 14.2. One could just as well define group actions from the left. As usual,

the important thing is to remain consistent in any calculation.

We denote by πg the map s 7→ sg.

Proposition 14.3. Let the group G act on the set S. Then

(i) For every g ∈ G, πg is a permutation of S.

(ii) The map g 7→ πg is a group homomorphism from G to GS , the group of permuta-

tions of S.

PROOF: (i) I claim that the map πg is invertible with inverse πg−1 . This follows from

axioms (1) and (2). For let s ∈ S. Then

s(πgπg−1) = (πg−1 ◦ πg)(s) = (sg)g−1 (2)
= s(gg−1) = s1G

(1)
= s.

(ii) Call this map φ. That φ is a group homomorphism also follows from axiom (2),

since for any s ∈ S and g, h ∈ G:

s(φ(gh)) = s(πgh) = s(gh)
(2)
= (sg)h

= (sπg)πh = (πh ◦ πg)(s) = s(πgπh) = (s)φ(g)φ(h).

In other words, φ(gh) = φ(h) ◦ φ(g) = φ(g)φ(h) as functions on S, v.s.v.

Definition 14.4. If the map φ in Proposition 14.3 is injective, then G is said to act

faithfully on S. In that case, φ(G) is a subgroup of GS . We say that φ is an embedding

of G into GS .

Theorem 14.5. (Cayley’s Theorem for Groups) Any group can be embedded into

the group of permutations on some set.

PROOF: Let G be a group. Then G acts on itself, considered as a set, by right-

multiplication. In other words, we interpret sg as multiplication in the group, for all

s, g ∈ G. It is clear that this is indeed a group action:

Axiom (1) is equivalent to 1G actually being an identity element for G.
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Axiom (2) is equivalent to the group operation being associative.

More significantly, this action is faithful. For if πg is the identity map, then for all s ∈ G
we have s = sg ⇒ s−1(sg) = s−1s ⇒ g = 1. Hence, the map φ in this case embeds G
into the group of permutations of G itself, considered as just a set.

Remark 14.6. Cayley’s theorem explains wht the notion of group action on a set gen-

ralises the notion of group itself. It is also of conceptual importance in that it says

that every group can be considered as a group of permutations (on some set), hence

that permutation groups, strictly speaking, cover all groups. Whether or note this latter

viewpoint is useful depends on the problem at hand.

We now begin the build up to the fundamental combinatorial result about group ac-

tions on sets, Theorem 14.14 below. From now on, so we don’t have to constantly repeat

ourselves in definitions and results, G is a group acting from the right on a set S.

Definition 14.7. For s in S, the G-orbit of s is the subset sG of S given by

sG = {sg : g ∈ G} = {s′ ∈ S : ∃ g ∈ G with sg = s′}.

Proposition 14.8. The G-orbits partition S. In other words, if s1, s2 ∈ S then either

s1G = s2G or s1G ∩ s2G = φ.

PROOF: Suppose s1G ∩ s2G 6= φ. Then there exist g1, g2 ∈ G such that s1g1 =
s2g2 ⇒ s2 = (s1g1)g

−1
2 = (s1)g1g

−1
2 . Now let s2g be an arbitrary element of s2G.

Then s2g = (s1g1g
−1
2 )g = (s1)g1g

−1
2 g ∈ s1G. Thus, s2G ⊆ s1G. A similar argument

shows that s1G ⊆ s2G, hence s1G = s2G, v.s.v.

Remark 14.9. Proposition 14.8 is a generalisation of Proposition 9.10 or, more pre-

cisely, of the equivalent version of Prop. 9.10 for left cosets. In the latter case, we have

a subgroup H of a group G acting on G by right multiplication. The H-orbits then

correspond to the left cosets of H in G. Proposition 9.10 itself is a special case of the

equivalent version of Prop. 14.8 for left actions.

Definition 14.10. For s ∈ S, the stabilizer of s is the subgroup StabG(s) of G given by

StabG(s) = {g ∈ G : sg = s}.

Note that StabG(s) is indeed a subgroup of G since

(a) s = sg = sh ⇒ (s)gh = (sg)h = sh = s
(b) s1 = s
(c) s = sg ⇒ sg−1 = (sg)g−1 = s1 = s.

Proposition 14.11. If G is a finite group and S a finite set then, for any s ∈ S,

|sG| =
|G|

|StabG(s)|
. (14.1)

PROOF: Let H := StabG(s). As already noted, H is a subgroup of G. I claim that

there is a 1-1 correspondence between the elements of sG and the right cosets of H in
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G, given by sg 7→ Hg, which will immediately imply (14.1). We need to show that this

map from elements in the orbit of s to cosets of H has three properties:

Well-definedness: If sg1 = sg2 then we need to have Hg1 = Hg2. But sg1 = sg2 ⇒
s = s1 = (sg1)g

−1
1 = (sg2)g

−1
1 ⇒ g2g

−1
1 ∈ H ⇔ Hg2 = Hg1, v.s.v.

Injectivity: Basically, just run the above argument backwards:

Hg1 = Hg2 ⇒ g2g
−1
1 ∈ H ⇒ (s)g2g

−1
1 = s ⇒ sg2 = sg1.

Surjectivity: Trivial. Any right coset is of the form Hg for some g ∈ G, and will thus

be the image of sg.

Remark 14.12. Proposition 14.11 can be considered a generalisation of Theorem 9.13.

Definition 14.13. For g ∈ G, the fixed point set of g, denoted Fg(S), is the subset

of S given by

Fg(s) = {s ∈ S : sg = s}.

Theorem 14.14. (Burnside’s Lemma) For any action by a finite group G on a finite

set S one has

#G-orbits in S =
1

|G|

∑

g∈G

|Fg(S)|. (14.2)

PROOF: Start by turning (14.1) upsidedown. So for any s ∈ S,

1

|sG|
=

1

|G|
· |StabG(s)|.

Now sum over all s ∈ S to get

∑

s∈S

1

|sG|
=

1

|G|

∑

s∈S

|StabG(s)|. (14.3)

First consider the LHS of (14.3). When we sum over the elements in a fixed orbit, then

each such element will contribute 1/t to the sum, where t is the size of the orbit. Hence,

summing over the elements in a single orbit will in total contribute 1 to the sum. It

follows that the entire sum is just the number of G-orbits in S. Hence, in order to prove

(14.2), it remains to show that
∑

s∈S

|StabG(s)| =
∑

g∈G

|Fg(S)|. (14.4)

This is proven by noting that both sides count the same thing, just in two different ways.

Namely, both sides count the number of pairs (s, g) ∈ S ×G such that sg = s.

For, on the one hand, if we first fix s ∈ S, then there are |StabG(s)| possibilities for

g. Then summing over all s yields the LHS of (14.4).

On the other hand, if we first fix g ∈ G, then there are |Fg(S)| possibilities for s.

Then summing over all g ∈ G yields the RHS of (14.4).

Remark 14.15. This idea of counting pairs in two different ways by projecting first

onto one or the other coordinate is a general combinatorial principle which arises in

many settings (see Demo5). This explains why Burnside’s Lemma is considered a
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combinatorial result. The example below is perhaps the best-known application of the

Lemma.

In applications, one is interested in counting the number of orbits for some group ac-

tion on a set, and Burnside’s Lemma is useful if it turns out to be easier to count the sizes

of sets of fixed points. In this sense, Burnside’s Lemma is analogous to the Inclusion-

Exclusion principle, where one is interested in counting the size of some union of sets,

but it turns out to be easier to count sizes of intersections instead.

Example 14.16. (The Necklace Problem) Let n, k be positive integers. A necklace

consists of n beads arranged on a circular string, each of which is in one of k available

colors. Let N (n, k) denote the number of different necklaces one can make from n
beads and k colors. When we say “different” we are taking account of the fact that we

don’t distinguish between two arrangements of beads if one can be obtained from the

other by just “moving the necklace around”.

To make this question precise, we imagine the necklace as being a regular n-gon with

the beads as its vertices. Let S = Sn, k be the set of all n-tuples (c1, c2, . . . , cn), where

each ci ∈ {1, 2, . . . , k}. In other words, we number the vertices of the n-gon from 1 to

n and number the available colors from 1 to k so that the elements of Sn, k correspond to

all possible arrangements of colored beads. This is before we take account of whether

two arrangements are different necklaces or not. For the latter, we let G = Gn be the

group of symmetries of a regular n-gon. This group acts on the set Sn, k, for any k. Thus,

two necklaces are considered different if they lie in different G-orbits, so N (n, k) is

the number of G-orbits and we can use Burnside’s Lemma to compute it:

N (n, k) =
1

|Gn|

∑

g∈Gn

|Fg(Sn, k)|. (14.5)

Now the group of symmetries of a regular n-gon is a well-known object. It is called

the dihedral group of order n and usually denoted Dn. Earlier in the course, we have

already encountered D3
∼= S3, the symmetry group of an equilateral triangle, and D4,

the symmetry group of a square.

The group Dn contains two types of geometrical transformations:

(a) rotations by a mulltiple of 2π/n
(b) reflection in one of n lines through the centerpoint of the n-gon.

Denote a 2π/n rotation by a and a reflection by b. Then Dn has the presentation

Dn =< a, b : an = b2 = 1, b−1ab = a−1 > .

The last commutator identity needs to be checked, but that’s not important here. What

matters is that Dn has size 2n and consists of the following elements

Dn = {1} ∪ {ai : 1 ≤ i ≤ n− 1} ∪ {aib : 0 ≤ i ≤ n− 1},

where every element in the second subset is a rotation and every elöement in the third

subset is a reflection. Substituting into (14.5) we get

N (n, k) =
1

2n

(

|F1|+
n−1
∑

i=1

|Fai |+
n−1
∑

i=0

|Faib|

)

. (14.6)
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Identity: The identity element in G fixes every element of S (this applies to any group

action, by Axiom (1)). Thus |F1| = |S| = |Sn, k| = kn.

Reflections: Here things are simplest when n is odd. In that case, every reflection is in

a line through one of the vertices of the n-gon and the midpoint of the opposite side.

A reflection thus fixes k(n+1)/2 configurations of colored beads, since the colors can be

chosen arbitrarily for the nodes on one side of the line, including the node on the line

itself, and then the colors on the opposite nodes must match these. So, if n is odd, we

have |Faib| = k(n+1)/2. I will leave it as an exericse for you to work out the answer

when n is even (or see Homework 3, Exercise 3).

Rotations: Here things get trickier, because it turns out that the number of configura-

tions fixed by a rotation of 2πi/n depends on GCD(i, n). See Homework 3 for further

discussion. Here we just consider the simplest case, namely when n is prime. In that

case, for a configuration to be left unchanged by a non-trivial rotation, all the beads must

have the same color (more generally, this is true of a rotation through 2πi/n whenever

GCD(i, n) = 1). Hence, |Fai | = k for each i.

Substituting everything into (14.6), we get the following formula when n = p is an

odd prime:

N (p, k) =
1

2n
(kn + (n− 1)k + n · k(n+1)/2).

In class, we specifically did the (smallest non-trivial) example p = 5, k = 2. Thus

N (5, 2) =
1

10
(25 + 4 · 2 + 5 · 23) = 8.

So you can make 8 different necklaces from 5 beads, given two available colors.


