
18th Lecture: 3/3

Definition 18.1. A graph G is said to be a tree if it is connected and has no cycles. Trees

are often denoted by the letter T . A graph which has no cycles but is not necessarily

connected is called a forest. Forests are often denoted by the letter F . Note that every

connected component of a forest is a tree.

Definition 18.2. A rooted tree is a pair (T, v), where T is a tree and v ∈ V (T).
The vertex v is called the root.

The word “tree”, as used in ordinary language, is probably closer in meaning to Def-

inition 18.2 than Definition 18.1. As Figure 18.1 shows, the same tree can “look” quite

different, depending on which vertex is chosen as the root.

Definition 18.3. Let T = (V, E) be a tree. A vertex v ∈ V is called a leaf if

deg(v) = 1. A vertex v is called a branching point if deg(v) ≥ 3. If every vertex

in T has degree at most 2, then T is called a chain or path. If T has at least one branch-

ing point then it is called a branched tree.

Let f(n) denote the number of isomorphism classes of trees on n vertices. One may

compute the following values:

n 1 2 3 4 5 6 7
f(n) 1 1 1 2 3 6 11

The various trees are exhibited in Figure 18.2. The sequence (f(n)) is number

A000055 at oeis.org. There is no closed formula for f(n). When attempting to

list all trees on n nodes, up to isomorphism, a good strategy is to start with a vertex of

maximum degree, and consider this as the root, as we have done in Figure 18.2.

The following theorem gives three alternative characterisations of trees. I did not go

through the detailed proof in class, because all of it is fairly obvious, just a pain to write

down all the details rigorously. I include the full proof here for the sake of complete-

ness. However, this proof will not be examinable.

Theorem 18.4. For a graph G = (V, E), the following are equivalent:

(i) G is a tree.

(ii) For each pair x, y of distinct nodes, there is a unique path in G between x and y.

(iii) Removing any edge from G results in a graph with two connected components, each

of which is a tree.

(iv) G is connected and |E| = |V | − 1.

PROOF: (i) ⇔ (ii): If there were two different paths between some pair x and y of

vertices, then G would contain a cycle, part of the closed walk got by following one of

the paths from x to y and the other from y back to x.
1

2

(ii) ⇔ (iii): Suppose G = (V, E) satisfies (ii), let e = {x, y} be an edge and let

G′ be the graph remaining when e is removed. The edge e represents a path between

x and y in G so, if we remove it, there can no longer be any path between these two

vertices. Thus G′ is disconnected. Let Vx (resp. Vy) be the subset of V consisting of

those vertices which are reachable in G from x (resp. from y) by a path which does

not use the edge e and let Ex (resp. Ey) be the set of edges in G between vertices of

Vx (resp. Vy). The sets Vx and Vy must be disjoint, as otherwise G would contain a

cycle formed by paths from this common vertex to x and y together with the edge e.

The subgraphs (Vx, Ex) and (Vy, Ey) are, by definition, connected and, since they are

subgraphs of G, they contain no cycles, hence are trees. We claim that these are the

two connected components of G′. All that’s left in order to prove this is to show that

Vx ∪ Vy = V . So let v ∈ V . Since G is connected, v is reachable by a simple path from

each of x and y. Any such path which uses the edge e can do so only once. If it does

so, then either it crosses from x to y or vice versa. In the first case, the remainder of the

path is a simple path from y to v which doesn’t use e at all, hence v ∈ Vy. In the second

case, similarly, v ∈ Vx.

Conversely, if for some pair x and y¸ of vertices, there was more than one path be-

tween them, then any two such paths would form a closed walk which in turn must

contain a cycle. Removal of any single edge along this cycle would not disconnect the

graph.

(i) ⇒ (iv): This is a special case of Theorem 16.x. Since it contains no cycles, a tree

can always be drawn in the plane without any two edges crossing.

(iv) ⇒ (i): We once again proceed by induction on |V |. If |V | = 1 and |E| = |V |−1 =
0, then G is just a single vertex and is obviously a tree.

Suppose (iv) implies (i) for all graphs on n ≥ 1 vertices, and let G = (V, E) be a

connected graph with |V | = n + 1 and |E| = n. The degree equation (15.7) implies

that ∑

v∈V

deg(v) = 2|E| = 2|V | − 2. (18.1)

Now since G is connected, every vertex has degree at least one. But since the sum of the

degrees is strictly less than 2|V |, it follows that some vertex must have degree one. Let

v be any such vertex, and let e be the unique edge incident to v. Let G′ = (V ′, E ′) be

the n-vertex graph got by removing v and e. Since we’ve removed one vertex and one

edge, this graph also satisfies |E ′| = |V ′|− 1. I claim it is also connected. For let v1, v2
be distinct vertices in V ′. Since G is connected, there is a path in G between them. But

this path cannot use the edge e, as it is the only edge going out to v and a path cannot

use any edge more than once. Hence the path lies entirely in G′, as required. There-

fore, we can apply the induction hypothesis and conclude that G′ is a tree, i.e.: that it has

no cycles. But then neither does G, since the hanging edge e cannot be part of any cycle.

Corollary 18.5. Let T = (V, E) be a tree. Then T contains at least two leaves. If

it contains exactly two leaves then it is a chain.

3

PROOF: This follows from how the degree equation was applied in (18.1).

Definition 18.6. Let G be a connected graph. A subgraph H of G is called a span-

ning tree for G if H is a tree and includes every vertex of G.

Let g(n) denote the number of spanning trees of the complete graph Kn. Another

way of saying it is that g(n) is the number of labelled trees on n vertices, that is, the

number of ways to pick an n-vertex tree and label its vertices from 1 to n such that

two labellings are considered the same if and only if the two trees are isomorphic and

exactly the same pairs of labels are edges. Hence, the difference from the function f(n)
considered earlier is that now two trees on the same vertex set must have exactly the

same edges in order to be considered “the same”, it is not sufficient that they be isomor-

phic. In particular, g(n) should grow much faster than f(n). What is perhaps surprising

at first sight is that, in sharp contrast to f(n), there is a very simple formula1 for g(n):

Theorem 18.7. (Cayley’s theorem)

g(n) = nn−2. (18.2)

PROOF: Omitted due to time constraints. The 44−2 = 16 different spanning trees of

K4 are exhibited in Figure 18.3.

The minimum spanning tree (MST) problem. As already noted in a footnote in Lec-

ture 16, a weighted graph is a pair (G, w), where G is a graph and w : E(G) → R+ is a

function from the edges of G to non-negative real numbers. For e ∈ E(G), the quantity

w(e) is called the weight or cost of the edge e.

The Minimum Spanning Tree (MST) Problem asks for an algorithm to find, in a con-

nected, weighted graph G, a spanning tree of minimum weight, where the weight of a

subgraph is defined as the sum of the weights of its edges. The problem has many appli-

cations involving the cheapest way to connect up a bunch of hubs/nodes in a network.

This turns out to be a very simple problem and there are two standard solutions,

Prim’s algorithm and Kruskal’s algorithm. Both involve the idea of a greedy search for

minimal weights, but implement the idea differently.

Prim’s algorithm. At the first step choose a vertex v1 ∈ V (G) arbitrarily, and choose

an edge e = {v1, v2} of minimum weight incident to v1. If there are several edges of

the same weight to choose from, choose one of them at random. Add v2 to the set of

covered vertices. At each subsequent step, choose an edge e = {v, w} of minimum

weight among all edges which have one endpoint v in the set of hitherto covered ver-

tices and the other endpoint w among the vertices not yet covered. If there are several

edges of equal weight to choose from, choose randomly. Add w to the set of covered

vertices. Continue until all of V (G) is covered. The set of chosen edges forms a MST.

1Since there are n! permutations of an n-set and two trees are isomorphic if they contain the same

edges up to a permutation of their labelled vertices, one would intuitively expect that g(n)/f(n) ≈ n!
and hence, from (18.2) and Stirling’s formula, that f(n) grows roughly exponentially with n. I think this

is the case, though I have not checked what the most precise estimates are to date for the growth of f(n).

4

Kruskal’s algorithm. At the first step choose an edge of minimum weight among

all edges in G. If there are several edges of the same weight to choose from, choose

one of them at random. At each subsequent step, choose an edge e of minimum weight

among those which satisfy the following two properties:

(i) the edge e has not yet been chosen

(ii) adding e to the set of chosen edges does not create any cycles.

If there are several edges of equal weight to choose from, choose randomly. Continue

until |V (G)| − 1 edges have been chosen. The set of chosen edges forms a MST.

The proofs that the two algorithms always yield MSTs are very similar. Here we

present the proof for Prim’s algorithm. That for Kruskal’s algorithm is left as an (op-

tional) exercise to the reader. See Demo5, Exercise 8 for a worked example for both

algorithms.

Theorem 18.8. Prim’s algorithm always produces a minimum spanning tree.

PROOF: Let G = (V, E) be a connected, weighted graph on n vertices and let T

be a spanning tree for G produced by Prim’s algorithm. Let e1, e2, . . . , en−1 be the

sequence of edges chosen by the algorithm in order. Let U be any other spanning tree

for G and let i be the smallest index such that ei is not an edge in U . We will show

that there is another spanning tree U∗ such that w(U∗) ≤ w(U) and U∗ contains each

of the edges e1, . . . , ei. Iterating this procedure at most n − 1 times will thus show

that w(T) ≤ w(U) and hence that T is a minimum spanning tree, since U was chosen

arbitrarily.

Now U contains each of the edges e1, . . . , ei−1 by assumption. Let S be the set of

vertices spanned by these edges. Let ei = {x, y}, where x ∈ S and y ∈ V \S - Prim’s

algorithm always chooses the next edge so that it covers a new vertex. Since U spans G,

there must be some path in U from x to y. Call this path Pxy. This path starts at a vertex

in S and ends at a vertex in V \S. Hence there must be a first edge e : z → w along the

path such that z ∈ S and w ∈ V \S. Now the edge e was available to Prim’s algorithm

at the i:th step but was not chosen ahead of ei. Since the algorithm always chooses

an edge of minimal weight amongst those available, we must have w(e) ≥ w(ei). Let

U∗ := (U ∪ {ei})\{e}. Thus w(U∗) ≤ w(U) and U∗ contains all the edges e1, . . . , ei.

So all that remains to be shown is that U∗ is a spanning tree for G. Since U∗ has the

same number of edges as the spanning tree U , it suffices to show that it spans G, for

then it will follow immediately from Theorem 18.4(iv) that it contains no cycles.

So let v1, v2 ∈ V . Since U spans G, there is a unique path in U from v1 to v2. Call

it Pv1v2 . If this path doesn’t use the edge e then it is still present in U∗. So suppose the

path Pv1v2 does use the edge e. Let Cxy be the cycle formed by the path Pxy above and

the edge ei. Then we obtain a walk in U∗ from v1 to v2 by

- following the path Pv1v2 until we hit the edge e,

- then replacing e by the rest of the cycle Cxy, traversed in the appropriate direction,

- finally continuing to y along the path Pv1v2 .

We’ve proven that U∗ contains a walk, and hence a path, between any pair of vertices

of G, hence it spans G, v.s.v.

5

Shortest path problem. Let G = (V, E) be a weighted graph or digraph. In this

setting, the weights are thought of as lengths. The Shortest Path Problem asks for an

algorithm to find a shortest path between two given vertices s, t ∈ V , where the length

of a path is the sum of the lengths of the edges along it. Note that we think of s as the

“start” of the path and t as the “terminus”. The standard solution to this problem is the

following procedure:

Dijkstra’s algorithm. Set l(s) := 0, V := {s} and T := φ. The function l is called a

labelling. V will be a collection of labelled vertices, updated one vertex at a time until

we reach t. T will be a tree, updated one edge at a time.

Choose an (out)edge e = {s, v1} from s of minimal weight and set l(v1) := w(e).
Add v1 to V and add e to T .

At a general step, do the following: for each (directed) edge e = {v, w} with

startpoint v at a labelled vertex and endpoint w at a not-yet-labelled vertex, compute

l′(w) := l(v) + w(e). We call l′ a temporary labelling. Compare all the temporary

labels and choose the smallest one - if there are several equal values to choose from,

choose randomly. Make the chosen temporary label l′(w0) permanent and add the ver-

tex w0 to V . Add the corresponding edge to T .

Continue until t is labelled. At this point, T will contain a unique path from s to t,

which can be found by backtracking from t. This will be a shortest path in G from s to t.

To prove that Dijkstra’s algorithm works is essentially trivial. There is a so-called

Breadth First Search built into the algorithm which ensures that we always find a short-

est path. In particular, it ensures that we never get into trouble by being “too greedy”,

for example by following a path of cheap edges for a while and suddenly getting stuck

in a corner where only very expensive options are available. See Demo5, Excercise 8

for a worked example.

