
13th Lecture: 23/2

Permutations. We will focus on permutations of finite sets. Recall that Sn denotes

the group of permutations of {1, 2, . . . , n}. We will henceforth also employ the more

compact notation [n] := {1, 2, . . . , n}.

Definition 13.1. Let n, k ∈ Z+ with k ≤ n. A permutation π ∈ Sn is called a

k-cycle if there is a subset {x1, x2, . . . , xk} of [n] of size k such that

π(x1) = x2, π(x2) = x3, . . . , π(xk−1) = xk, π(xk) = x1; π(i) = i ∀ i ∈ [n]\{x1, x2, . . . , xk}.
(13.1)

Notation 13.2. The k-cycle π given by (13.1) will be denoted

π = (x1 x2 . . . xk).

Observe that

(x1 x2 . . . xk) = (x2 x3 . . . xk x1) = · · · = (xk x1 x2 . . . xk−1).

When writing a cycle with this notation, the convention is to always place the smallest

number in the leftmost position.

When composing permutations, we will adopt the default multiplicative notation for

group operations. Hence π1π2 is the function π2 ◦ π1. When using cycle notation, this

means that we “follow each number from left to right”. For example,

(12)(13) = (13)(23) = (23)(12) = (123), (13)(12) = (23)(13) = (12)(23) = (132).

Observation 13.3. Suppose π1 and π2 are cycles on disjoint subsets {x1, . . . , xk} ∩
{y1, . . . , yl} = φ of [n]. Then it is clear that they commute, π1π2 = π2π1. It follows

that every element of Sn can be uniquely written as a product of pairwise disjoint cy-

cles, provided we adopt the following conventions:

1. As already mentioned above, each cycle is written with its smallest number to the

left.

2. Disjoint cycles are written from left to right in order of increasing smallest number.

3. Fixed points are written as 1-cycles.

Example 13.4. Let π ∈ S10 be given as a function [10] → [10] by

i 1 2 3 4 5 6 7 8 9 10
π(i) 3 5 10 4 7 1 2 9 8 6

Then, in cycle notation, we have

π = (1 3 10 6)(2 5 7)(4)(8 9).

Notation and Terminology 13.5. Recall that the order of an element g in a group G
is the smallest n ∈ Z+ ∪ {∞} such that gn = 1 and that, if G is finite, then the order

of any element is a divisor of |G|, by Corollary 9.15. We denote the order of g ∈ G
by |g|. This notation makes sense since |g| is also the size of the cyclic subgroup of G
generated by g, i.e.: |g| = | < g > |.

Now suppose π ∈ Sn is written in the conventional manner (Obs. 13.3) as a product

of disjoint cycles, as π = π1π2 . . . πt. Since the order of a k-cycle is clearly k (see Prop.
1
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13.6(i) below), we have
∑

t

i=1
|πi| = n and so the cycle lengths/orders form a partition

of n. The set {|π1|, |π2|, . . . , |πt|} of cycle lengths is called the cycle structure of π.

Thus, for each 1 ≤ k ≤ n, there are p(n, k) possible cycle structures for a permutation

π ∈ Sn which is a product of k pairwise disjoint cycles when using the conventional

notation in Observation 13.3.

Proposition 13.6. (i) If π ∈ Sn is a k-cycle then |π| = k.

(ii) More generally, if π1, π2, . . . , πt are pairwise disjoint ki-cycles, i = 1, . . . , t, then

|π1π2 . . . πt| = LCM(|π1|, |π2|, . . . , |πt|) = LCM(k1, k2, . . . , kt).

(iii)

(x1 x2 . . . xk)
−1 = (x1 xk xk−1 . . . x2).

PROOF: (i) It is clear that the order of a k-cycle is just k - in other words, a cyclic shift

of k numbers must be performed k times to get back the initial configuration.

(ii) First note that, for any two commuting elements g1 and g2 of any finite group G,

|g1g2| will be a divisor of LCM(|g1|, |g2|). For, since the gi commute, (g1g2)
s = gs1g

s
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for any s ∈ Z+ and thus gs1 = gs2 = 1 ⇒ (g1g2)
s = 1.

Now let π = π1 . . . πt be a product of pairwise disjoint cycles. If s is not a multiple

of LCM(|π1|, . . . , |πt|) then there will be some i for which πs

i
6= 1. But the remaining

cycles never interact with πi since they only move around disjoint sets of numbers.

Hence πs can’t be the identity function either.

(iii) This is obvious. Think of π as a clockwise shift with x1 at 12-o’clock. Then π−1

is instead an anti-clockwise shift with x1 still at 12-o’clock.

Recall that the Stirling numbers of the second kind S(n, k) counted the number of

ways to place n distinguishable balls in k identical bins so that no bin was left empty.

It’s natural to ask: what are Stirling numbers of the first kind ? Well, here’s the answer:

Definition 13.7. Let n, k ∈ Z+ with k ≤ n. The Stirling number of the first kind

s(n, k) is the number of permutations π ∈ Sn which are a product of exactly k pairwise

disjoint cycles, using the conventions of Observation 13.3.

We then have the following analogue of Theorem 6.3:

Theorem 13.8.

∀n ∈ Z+ : s(n, n) = 1,

∀n ∈ Z+ : s(n, 1) = (n− 1)!,

∀n ∈ Z+, 2 ≤ k ≤ n : s(n+ 1, k) = n · s(n, k) + s(n, k − 1). (13.2)

PROOF: (i) If π ∈ Sn is a product of n p.d. cycles, then each cycle must have length 1
and hence π can only be the identity permutation. This proves that s(n, n) = 1 ∀n.

(ii) If π ∈ Sn has just one cycle, then this cycle has length n (recall the convention

that fixed points are included as cycles of length one) and hence π = (1x2 x3 . . . xn),
where x2x3 . . . xn is an arbitrary permutation of 23 . . . n. Hence there are (n − 1)!
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possibilities for π. Another way to look at it is that s(n, 1) = n!

n
since there are are n

possible choices of the “base point” for a given n-cycle.

(iii) Fix n, k and consider the following two options for a permutation π ∈ Sn+1

which is a product of k p.d. cycles:

Case 1: π(1) = 1. Then π = π1π
∗, where π1 ∈ S1 and π∗ is some permutation of

2, 3, . . . , n+ 1. Thus π∗ can be considered as an element of Sn. If π has k p.d. cycles

then π∗ has k − 1 p.d. cycles. There are thus s(n, k − 1) possibilities for π∗ and hence

also for π.

Case 2: π(1) 6= 1. Firstly, there are n options for π(1). Hence, by AP and MP, in

order to prove (13.2) it remains to prove that, for any given i ∈ {2, . . . , n + 1}, if

π(1) = i then there are s(n, k) possibilities for π. We will do so by describing a simple

1-1 correspondence π ↔ π∗, where π is a permutation of 1, . . . , n + 1 with k p.d. cy-

cles and satisfying π(1) = i 6= 1 for some fixed i, while π∗ is an arbitrary permutation

of 2, . . . , n+ 1 with k p.d. cycles.

We write π using conventional cycle notation and it will look like

π = (1 i . . . )σ

where σ is some product of k− 1 p.d. cycles on some subset of {2, 3, . . . , n+ 1}. We

then just set

π∗ := (i . . . )σ

and it is clear that π ↔ π∗ is a 1-1 correspondence and that π∗ can be any permutation

of 2, . . . , n+ 1 with k p.d. cycles.

Remark 13.9. It is now natural to ask what is the relationship between Stirling numbers

of the first and second kinds. In words, there is a many-to-one correspondence between

the permutations counted by the numbers s(n, k) and the distributions of balls into bins

counted by the numbers S(n, k). But “how many” depends on the cycle structure of a

permutation. Let’s just do an example. Let π ∈ S7 be given by

π = (1 2 3 4)(5 6 7).

So π is a product of two disjoint cycles. The obvious corresponding distribution of 7
distinguishable balls into 2 identical bins is that one bin receives balls 1,2,3,4 and the

other gets balls 5,6,7. That the bins are identical corresponds to the fact that the cycles

commute: (1 2 3 4)(5 6 7) = (5 6 7)(1 2 3 4). However, there are many different permu-

tations which correspond to the same distribution of balls, namely any permutation of

the form σ = σ1σ2, where σ1 is some cycle on 1, 2, 3, 4 and σ2 is some cycle on 5, 6, 7.

From the argument in the proof of Theorem 13.8(ii), there are (4 − 1)! = 3! = 6 pos-

sibilities for σ1 and (3 − 1)! = 2! = 2 possibilities for σ2. Hence there are 6 · 2 = 12
different permutations in S7 which all correspond to the same distribution of balls into

bins as {1, 2, 3, 4} ∪ {5, 6, 7}.

Definition 13.10. A 2-cycle is called a transposition. If π = (i j) we say that π trans-

poses i and j.



4

Proposition 13.11.

(1 2 3 . . . k) = (1 2)(1 3) . . . (1 k).

PROOF: By staring.

It follows that every permutation on a finite set can be written as a product of trans-

positions (this is also “intuitively obvious”). Note, by the way, that a transposition is

its own inverse. Hence, if we write a permutation as a product of transpositions then its

inverse is just the same product of transpositions backwards:

π = τ1τ2 . . . τr ⇔ π−1 = τr . . . τ2τ1. (13.3)

However, it is also clear that there are, in general, many different ways to perform a

given permutation as a composition of transpositions. This motivates the next defini-

tion:

Definition 13.12. A permutation on a finite set is said to be even (resp. odd) if it

can be written as a product of an even (resp. odd) number of transpositions.

Theorem 13.13. A permutation cannot be both even and odd.

PROOF: There are various ways to explain this (see Remark 13.14 below), but we will

do so using the concept of permutation matrix, which you have already encountered in

linear algebra. Recall that every π ∈ Sn corresponds to left-multiplication by a matrix

Mπ ∈ Mn(R)














π(1)
π(2)
·
·
·

π(n)















= Mπ















1
2
·
·
·
n















.

The matrix Mπ is obtained from the identity matrix In by a permutation of its rows,

namely: the i:th row of Mπ is the π(i):th row of In, for each i = 1, . . . , n. Now recall

from linear algebra that

(a) If we permute two rows of In then we get a matrix with determinant −1.

(b) For any two n× n matrices A and B one has det(AB) = det(A)· det(B).
(c) Composition of linear transformations corresponds to matrix multiplication.

From (c) it follows that Mπ1π2
= Mπ2◦π1

= Mπ2
Mπ1

. Then from (a) and (b) it fol-

lows that

π is an even permutation ⇔ det(Mπ) = +1

π is an odd permutation ⇔ det(Mπ) = −1.

In particular, a permutation can’t be both odd and even, v.s.v.
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Remark 13.14. In the textbook, Theorem 13.13 is proven using the concept of in-

version. For 1 ≤ i < j ≤ n, the permutation π ∈ Sn is said to invert the pair (i, j)
if π(i) > π(j). The number of inversions in π, denoted inv(π), is the number of pairs

it inverts. One first shows that, if τ is a transposition, then inv(τ) is always an odd

number. From there one deduces that

π is an even permutation ⇔ inv(π) is an even number

π is an odd permutation ⇔ inv(π) is an odd number.

For details, see Vol. 2, Sats 5.1.

Notation 13.15. Since a sum of two even numbers is even, a product of two even

permutations is also even (since we just concatenate transpositions). In other words, the

set of even permutations in Sn, for a fixed n, is closed under the group operation and

hence is a subgroup of Sn. This subgroup is denoted An, and usually referred to as the

alternating group of order n.

Proposition 13.16. |A1| = 1 and, for each n ≥ 2, |An| = n!/2.

PROOF: If n = 1 then the only permutation is the trivial one, which is a product of

zero transpositions, hence even.

Now let n ≥ 2 be fixed. To simplify notation, set H := An and G := Sn. We

already noted above that H is a subgroup of G. Hence, by Proposition 9.10, G can be

partitioned into (right) cosets of H . One such coset is H itself. Secondly, if π is any

odd permuation then Hπ 6= H since every element of Hπ is of the form σπ where σ
is even, hence σπ will always be odd. Now what we want to show is that |H| = 1

2
|G|,

hence that there are exactly two cosets of H in G. It thus just remains to show that, if π1

and π2 are any two odd permutations, then Hπ1 = Hπ2. But this is also obvious since

Hπ1 = Hπ2 ⇔ H = Hπ1π
−1
2 ⇔ π1π

−1
2 ∈ H . But π1 and π2 are both odd, hence so

also is π−1
2 (see (13.3)) and thus π1π

−1
2 will be even, v.s.v.

Remark 13.17. The alternating groups are important objects in the study of finite

groups. For example the group A5 is the group of symmetries of an icosahedron, one

of the Platonic solids. For each n ≥ 5, the group An is simple. A group G is said to be

simple if it has no normal subgroups except itself and {1}. A subgroup H of a group

G is said to be normal if left- and right-cosets of H coincide: in the notation of Home-

work 2, Exercise 10, if G = NG(H). In an abelian group, every subgroup is normal, but

this is rarely the case in non-abelian groups1. The most important property of a normal

subgroup is that its cosets can be “multiplied”: since left- and right- cosets coincide we

have

(Hx)(Hy)
assoc.
= H(xH)y = H(Hx)y

assoc.
= HH(xy)

H subgp.
= Hxy.

1There are some examples of non-abelian groups in which every subgroup is normal.
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It turns out that the cosets thereby form a group, called the quotient group2 G/H .

Informally then, a normal subgroup H of G yields a “factorisation” of G into sub-

group H and quotient group G/H . A simple group is therefore the closest analogy in

group theory to the notion of a prime number in arithmetic. One of the most famous

problems solved during the 20th century was that of classifying all finite simple groups.

The so-called Classification of the Finite Simple Groups is generally regarded as one of

the most complicated proofs of the “pre-computer age”. It wasn’t accomplished by one

person in one paper, but rather was the result of the combined efforts of many authors

over a period of perhaps 30 years, up to the early 1980s. Since then, efforts have been

made to write down a complete proof in one place, but even the shortest complete proofs

are still several thousand pages long.

Example 13.18. (Femtonspelet) You’ve probably all seen the case n = 4 of this well-

known children’s game. You have an n× n square with n2 − 1 tiles, each showing one

of the numbers 1 through n2 − 1. You can move the tiles around with the help of the

“empty tile” and the goal is to get the tiles in the right order, that is, in increasing order

from left to right and top to bottom, with the empty tile in the bottom right-hand corner.

Usually, this is also the location of the empty tile at the outset. So the question is: for

which starting configurations can one solve the game ?

To answer this, we assume the empty tile is indeed in the bottom right-hand corner at

the outset and consider the initial configuration of numbered tiles as an element π ∈ Sn2 .

In words:

- for 1 ≤ i ≤ n2 − 1, π(i) is the number on the tile in position i, where we read

positions in increasing order from left to right and top to bottom

- π(n2) = n2, meaning that the empty tile is in the bottom-right position.

Now note that each move involves sliding one of the numbered tiles adjacent to the

empty tile into the latter position. In terms of permutations of [n2], this is a transposi-

tion. This transposition must move the empty tile and, since in the final configuration

it is supposed to be back where it started, the total number of moves performed in a

solution of the game must be an even number. Hence, the initial configuration must be

given by an even permutation π. In particular, this means that there are initial configu-

rations (at least half of all possible configurations, by Proposition 13.16) for which the

game can’t be solved.

It remains to answer whether the game can always be solved if the initial configu-

ration is an even permutation in Sn2 . Note that this is not immediately obvious, since

each move is a transposition involving the empty tile, hence, when considered in terms

of permutations of [n2], is a transposition involving a specific number, namely n2. In

other words, we are not allowed to write π in any way we like as a product of transpo-

sitions, but only transpositions each of which involves the number n2. It nevertheless

turns out that a solution is always possible. We hop over the proof, but see Projektövn-

ing 5.22 in Vol. 2 for the case n = 4.

2In particular, one can always form the quotient of an abelian group by a subgroup, since all subgroups

are in that case normal. This is analogous to the construction of quotient spaces in linear algebra (addition

of vectors is always commutative).


