
2nd Lecture: 18/1

Multinomial Theorem. The case of two variables you have probably all seen before.

Proposition 2.1. (Binomial Theorem) Let n be a non-negative integer. Then

(x+ y)n =
n
∑

k=0

(

n

k

)

xkyn−k. (2.1)

PROOF: When we fully expand (x + y)n there are a total of 2n terms of the form

xkyn−k, for some 0 ≤ k ≤ n. This is because we can choose either x or y from each

factor (2 choices) and there are n factors - so apply the Multiplication Principle.

For a fixed k, let us consider the number of times the term xkyn−k occurs in the ex-

pansion. To get this term we must choose an x from k factors, and then a y from each

of the remaining n − k factors. There are
(

n

k

)

choices for the k factors from which to

choose x, hence this will be the number of times the term xkyn−k occurs in the expan-

sion.

Remark 2.2. Their appearence as coefficients in the Binomial Theorem explains why

the numbers
(

n

k

)

are referred to as binomial coefficients.

In the above proof we used the fact that ordinary multiplication of numbers is com-

mutative - it allowed us to say that one got the same term xkyn−k irrespective of which k
factors one chose x from. Hence, there is no “binomial theorem” in a non-commutative

ring, for example if x and y were matrices.

When computing binomial coefficients, the following two results are useful:

Proposition 2.3. For each 0 ≤ k ≤ n one has
(

n

k

)

=

(

n

n− k

)

. (2.2)

PROOF: The number of ways to choose k elements from n is the same as the number

of ways to reject n− k elements. Alternatively, use Proposition 1.5.

Proposition 2.4. (Pascal’s identity) For each 1 ≤ k ≤ n+ 1 one has
(

n+ 1

k

)

=

(

n

k

)

+

(

n

k − 1

)

. (2.3)

There are many ways to prove this, but one way which I think gives “insight” (i.e.:

explains how on earth one might discover such a formula rather than just verify it). This

is the proof given below. But let me mention a couple of alternative proofs, which I will

leave as exercises to the reader to work out in detail:

ALTERNATIVE 1: Use induction on a suitable quantity.

ALTERNATIVE 2: Use Proposition 1.5 and some algebraic manipulation.
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NICEST PROOF: This proof involves combinatorial reasoning. Firstly, the LHS of

(2.3) is, by definition, the number of ways to choose k distinct elements from an (n+1)-
element set. Isolate one of the n+ 1 elements and consider two cases:

Case 1: This element is among the k chosen. Then it remains to choose k − 1 dis-

tinct elements from n. By definition, there are
(

n

k−1

)

ways to do this.

Case 2: This element is not among the k chosen. Then it remains to choose k dis-

tinct elements from n. By definition, there are
(

n

k

)

ways to do this.

Cases 1 and 2 are obviously mutually exclusive (i.e.: disjoint) and it is an either/or sit-

uation so, by the addition principle, the total number of possibilities for the full choice

of k elements is
(

n

k−1

)

+
(

n

k

)

.

Along with the initial conditions
(

n

0

)

=
(

n

n

)

= 1 ∀n, eq. (2.3) gives a recursive

formula for computing binomial coefficients. The numbers are usually represented in

Pascal’s triangle, which you can Google a picture of. The initial conditions give the 1s

on the sides of the triangle, while (2.3) means that every other number is the sum of the

two diagonally above it. The symmetry of the triangle about the perpendicular bisector

corresponds to (2.2).

Example 2.5. Let us expand (2x − y)5. Note that, when applying the Binomial Theo-

rem as stated above, the role of “x” is now played by 2x and the role of “y” is played

by −y. Thus,

(2x− y)5 =

(

5

0

)

x0y5 +

(

5

1

)

x1y4 +

(

5

2

)

x2y3 +

(

5

3

)

x3y2 +

(

5

4

)

x4y1 +

(

5

5

)

x5y0.

The binomial coefficients are given by the corresponding row of Pascal’s triangle, which

reads as 1, 5, 10, 10, 5, 1. Thus the expansion becomes

(2x− y)5 =

= −1 · 1 · y5 + 5 · (2x) · y4 − 10 · (4x2) · y3 + 10 · (8x3) · y2 − 5 · (16x4) · y + 1 · (32x5) · 1 =

= −y5 + 10xy4 − 40x2y3 + 80x3y2 − 80x4y + 32x5.

We now generalize the Binomial Theorem to an arbitrary number of variables:

Theorem 2.6. (Multinomial Theorem) Let n, n1, n2, . . . , nk be non-negative inte-

gers such that
∑k

i=1 ni = n. Then the coefficient of xn1

1 xn2

2 · · · xnk

k in the expansion of

(x1 + x2 + · · ·+ xk)
n is

n!
∏k

i=1 ni!
(2.4)

Remark 2.7. Note that this does indeed reduce to the Binomial Theorem in the case

k = 2. For then it says that the coefficient of xn1

1 xn2

2 in the expansion of (x1 + x2)
n is

n!
n1!n2!

. Changing notation according to x1 → x, x2 → y, n1 → k, n2 → n − k yields

(2.1).
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PROOF OF THEOREM 2.6.: As in the proof of Proposition 2.1, we begin by observ-

ing that when we fully expand (x1 + · · · + xk)
n, there are a total of kn terms. To get a

term
∏k

i=1 x
ni

i one must choose xi from ni factors, for each i = 1, . . . , k. Hence, the

coefficient of this term is the number of n-letter “words” (a.k.a. strings) in which ni of

the “letters” are xi, for each i = 1, . . . , k. There are n! permutations of the n letters

but, for each i, the ni! internal permutations of the copies of xi do not change the word.

By MP, there are thus P =
∏k

i=1 ni! permutations which do not change the word, and

hence n!
P

different words, q.e.d.

Exercise 2.8. (a) How many different words can one make using all the letters in

DISKRETMATEMATIK

(b) How many 5-letter words can one make which include all three Ts and otherwise

only vowels ?

(c) If one chooses 3 of the 16 letters at random, what is the probability that one chooses

3 consonants ?

(d) Suppose you had available infinitely many copies of each of the 9 different letters D,

I, S, K, R, E, T, M, A. In how many ways could you choose 13 letters, if order doesn’t

matter ?

SOLUTION: (a) Direct application of Theorem 2.6: 16!
(2!)5 3!

.

(b) There are
(

5
3

)

= 10 ways to place the Ts. In the remaining two positions we can

either (i) place two copies of the same vowel A, E or I or (ii) place two different vowels,

in which case the order matters. By AP, there are 3+3 ·2 = 9 ways to place the vowels,

hence by MP a total of 10 · 9 = 90 possible words.

(c) 1st solution: Whenever the letters are chosen (uniformly) at random, the probability

of some event E is given by

P(E) =
numbers of choices in which E occurs

total number of possible choices
.

The total number of possible choices of 3 letters is
(

16
3

)

. Since 10 of the 16 letters are

consonants, the numerator is
(

10
3

)

. Hence, the desired probability is
(

10
3

)

/
(

16
3

)

.

2nd solution: We think in terms of conditional probabilities. Let E be the event that

all 3 chosen letters are consonants. For each i = 1, 2, 3, let Ei be the event that the i:th
letter chosen is a consonant. Thus E = E1 ∧ E2 ∧ E3 and so we have

P(E) = P(E1) · P(E2 |E1) · P(E3 |E1 ∧ E2). (2.5)

Since 10 of the 16 letters are consonants we have P(E1) =
10
16

= 5
8
. Given E1, 9 of the

remaining 15 letters are consonants, so P(E2 |E1) =
9
15

= 3
5
. Given E1 ∧ E2, 8 of the

remaining 14 letters are consonants, so P(E3 |E1 ∧ E2) =
8
14

= 4
7
.

Substituting into (2.5) we have P(E) = 5
8
· 3
5
· 4
7
= 3

14
.

(d) Since order doesn’t count, all that matters is how many times we choose each of
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the 9 different letters. Thus we can apply Proposition 1.9 with k = 13 and n = 9.

Answer:
(

13+9−1
13

)

=
(

21
13

)

=
(

21
8

)

.

Inclusion-Exclusion Principle (also called Sieve Principle). This is a very elegant

and useful generalisation of the addition principle to the case of sets that are not pair-

wise disjoint.

The case of two sets.

|A ∪ B| = |A|+ |B| − |A ∩ B|. (2.6)

The case of three sets.

|A∪B ∪C| = |A|+ |B|+ |C| − |A∩B| − |A∩C| − |B ∩C|+ |A∩B ∩C|. (2.7)

There is a general pattern, given by the following result:

Theorem 2.9. (Inclusion-Exclusion Principle) Let A1, A2, . . . , An be finite sets.

Then
∣

∣

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣

∣

∣

=
k
∑

i=1

|Ai|−
∑

i 6=j

|Ai∩Aj|+
∑

i 6=j 6=k

|Ai∩Aj∩Ak|−· · ·+(−1)n−1|A1∩· · ·∩An|.

(2.8)

In order to prove the Inclusion-Exclusion principle, we need a lemma:

Lemma 2.10. Let n ≥ 1. Then

n
∑

k=0

(−1)k
(

n

k

)

= 0. (2.9)

PROOF: Simply apply the Binomial Theorem (2.1) with x = −1, y = 1.

Remark 2.11. Alternatively, (2.9) says that if n ≥ 1 then the sum of
(

n

k

)

over all

odd k equals the sum over all even k. In other words, it says that exactly half the sub-

sets of an n-element set have an odd, resp. even number of elements. I leave it as an

exercise for you to prove this “combinatorially”, i.e.: by describing an explicit bijection

between the odd-size and even-size subsets of {1, . . . , n} for any n ≥ 1.

PROOF OF THEOREM 2.9. Let x be any element of the union. It suffices to show

that x is counted exactly once on the RHS of (2.8). Suppose x belongs to m of the

n sets Ai, for some 1 ≤ m ≤ n. The symmetry of the formula (2.8) means that we

can assume, without loss of generality (WLOG), that x belongs to A1, A2, . . . , Am.

Then, on the RHS of (2.8), x is counted (−1)k−1 times for each k-element subset of

{1, 2, . . . , m}, where 1 ≤ k ≤ m (note that the empty subset does not appear). Hence,
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the total number of times x is counted is

m
∑

k=1

(−1)k−1

(

m

k

)

= −

(

m
∑

k=0

(−1)k
(

m

k

)

− (−1)0
(

m

0

)

)

Lemma 2.10
= −(0− 1) = 1, v.s.v.

Example 2.12. The I-E principle can be used to count the number of surjective func-

tions f : A → B, where A and B are two finite sets with |A| ≥ |B|. See Homework 1.

Example 2.13. (Derangements) The set of all n! permutations of {1, . . . , n} is called

the symmetric group of order n and is denoted Sn.

Let π ∈ Sn, i.e.: it is a bijective function from {1, 2, . . . , n} to itself. We say that

π is a derangement if π(i) 6= i for all i = 1, 2, . . . , n. In words, a derangement is a

permutation with no fixed points. We denote by dn the number of derangements in Sn.

Then there is the following beautiful result:

lim
n→∞

dn
n!

=
1

e
. (2.10)

One may think of (2.10) as saying that the probability of a random permutation of n
objects being a derangement goes to 1/e, as n → ∞. This is usually popularised as the

hat problem or the cloakroom problem - see Section 2 of the wiki article:

https://en.wikipedia.org/wiki/Derangement

To prove (2.10), let us being by recalling the Taylor series of the exponential function:

ex =
∞
∑

k=0

xk

k!

Taking x = −1 we obtain

e−1 =
1

e
=

∞
∑

k=0

(−1)k

k!
(2.11)

Now back to derangements. For each i = 1, 2, . . . , n, let Ai := {π ∈ Sn : π(i) = i}.

Then, by definition, dn is the cardinality of the set difference Sn\ ∪
n
i=1 Ai. By I-E,

dn = |Sn| −
n
∑

i=1

|Ai|+
∑

i 6=j

|Ai ∩ Aj| − · · ·+ (−1)n|A1 ∩ · · · ∩ An|.

The important point is that each of the terms on the RHS is easy to compute. We have

|Sn| = n!. Next take some Ai. Since i is fixed, a permutation belonging to Ai can

act freely as a permutation of the remaining n − 1 elements of {1, 2, . . . , n}. Hence

|Ai| = (n − 1)!. Then take some Ai ∩ Aj . A permutation in this set fixes both i
and j, hence can freely permute the remaining n − 2 elements of {1, 2, . . . , n}. Thus

|Ai ∩ Aj| = (n− 2)!. And so on ... We conclude that

dn = n!−n× (n− 1)!+

(

n

2

)

× (n− 2)!−

(

n

3

)

× (n− 3)!+ · · ·+(−1)n×

(

n

n

)

× 0!
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Using Proposition 1.5, this can be rewritten as

dn =
n!

0!
−

n!

1!
+

n!

2!
−

n!

3!
+ · · ·+ (−1)n ×

n!

n!
⇒

⇒
dn
n!

=
n
∑

k=0

(−1)k

k!

Taking limits as n → ∞ and using (2.11), we obtain (2.10), v.s.v.

Remark 2.14. The factor 1/e appears as a limiting probability in a similar, equally

famous, but considerably more subtle problem known colloquially as the Secretary

Problem. See the wiki article if you’re interested:

https://en.wikipedia.org/wiki/Secretary−problem

Pigeonhole Principle. This is usually presented somwhat informally as follows:

Pigeonhole Principle: If n + 1 pigeons are to be distributed among n pigeonholes,

then at least one pigeonhole must receive at least two pigeons.

A more precise formulation would be to say that if A, B are finite sets with |A| > |B|,
then no function f : A → B can be injective.

Extended Pigeonhole Principle: If k · n + 1 pigeons are to be distributed among n
pigeonholes, then at least one pigeonhole must receive at least k + 1 pigeons.

These very, very simple principles are used all over the place, often perhaps without

realising it. We will see examples throughout the course. Here I give one rather simple

and one not so simple application. The latter is amongst the most famous ones and also

very clever, illustrating how sometimes in mathematics (as in life !), the key to solving

a problem is to get the right idea, which may be based on something very simple but

where it is not at all obvious how.

Example 2.15. I claim that amongst any 8 integers there must be a pair whose differ-

ence is a multiple of 7. Let A be the set of these 8 integers and let B = {0, 1, . . . , 6}.

Define a map f : A → B by

f(x) = x (mod 7).

Now |A| = 8 and |B| = 7, so |A| > |B| and hence, by PHP, the function f cannot be

injective. Hence there must be a pair of numbers a1 6= a2 such that f(a1) = f(a2). But

this means that a1 ≡ a2 (mod 7) and hence that a1 − a2 is a multiple of 7, q.e.d.

Remark 2.16. In this example, we applied PHP to prove that there must exist a pair of

numbers having the desired property. However, the argument gives us no insight as to

how to find these two numbers, other than by an exhaustive search of all
(

8
2

)

= 28 pairs.

This is typical of applications of PHP: they provide pure existence arguments which are

algorithmically worthless.



7

Definition 2.17. A sequence a1, a2, . . . of distinct real numbers is said to be mono-

tone if it is either strictly increasing or strictly decreasing.

Example 2.18. (Erdős-Szekeres theorem (1935)) In any sequence of n2 + 1 distinct

real numbers, there must exist a montone subsequence of n+ 1 numbers.

Before beginning the proof, let us show that the result is “optimal” in the sense that

it is possible to write down, for every n ∈ Z+, a sequence of n2 distinct reals without

any monotone subsequence of length n+ 1. The idea is as follows:

1. Take any collection of n2 distinct reals. Divide the n2 numbers into n equally sized

groups G1, G2, . . . , Gn, each consisting of n numbers, such that G1 consists of the

smallest n numbers in the collection, G2 contains the next n smallest and so on.

2. Write the entire collection from left to right as G1 G2 . . . Gn.

3. Now rearrange the numbers inside each group Gi so that, from left to right, they form

a decreasing sequence.

It is easy to see that the sequence thus obtained contains no monotone subsequence

of length n + 1. Since the numbers are monotone decreasing within each group Gi,

an increasing subsequence can contain at most one number from each group, hence at

most n numbers in all. Similarly, since whenever i < j, every number in the group Gi

is less than every number in the group Gj , a decreasing subsequence can only contain

numbers from within a single group, hence at most n numbers.

PROOF OF ER-SZ THEOREM: Denote the sequence, written from left to right, as

x1, x2, . . . , xn2+1. For each i = 1, 2, . . . , n2+1, let Li denote the length of the longest

increasing subsequence whose first term is xi. If there were no increasing subsequence

at all of length n+ 1 then, in particular, each Li must be an integer among 1, 2, . . . , n.

But there are n2 + 1 of them so, by the Extended Pigeonhole Principle, some n + 1 of

them must all be equal, i.e.: there must exist 1 ≤ i1 < i2 < · · · < in+1 ≤ n2 + 1 such

that Li1 = Li2 = · · · = Lin+1
. But now you just have to stop and think and unravel

what this means: it means that the numbers xi1 , xi2 , . . . , xin+1
must form a decreasing

subsequence of length n+ 1. We’re done !


