
16th Lecture: 2/3

Theorem 16.1. (Euler’s theorem for digraphs) Let G = (V, E) be a di(multi)graph.

Then

(i) G possesses an Euler trail from a vertex v to a different vertex w if and only if

(a) outdeg(v) = indeg(v) + 1,

(b) indeg(w) = outdeg(w) + 1,

(c) for all other vertices x, outdeg(x) = indeg(x).

(ii) G possesses an Euler circuit if and only if, for every every vertex x, outdeg(x) =
indeg(x).

The theorem is proven in exactly the same way as Theorem 15.2 and yields exactly

the same greedy trail/circuit-finding algorithm. The reader is left to meditate on this

him/herself.

De Bruijn graphs. Let A be a finite set and k a positive integer. The elements of the

k-fold Cartesian product Ak can be identified with strings a1a2 . . . ak, ai ∈ A. In this

situation it is common to speak of A as an alphabet and of the strings as words of length

k in the alphabet A.

A digraph G = (V, E) is called a De Bruijn graph if there is a finite alphabet A and

a positive integer k such that

(i) V consists of all words of length k in the alphabet A,

(ii) there is a directed edge from the word a1a2 . . . ak to the word a′1a
′

2 . . . a
′

k if and

only if a′i = ai+1 for all i = 1, 2, . . . , k − 1.

Note that (ii) implies that there will be a loop at each vertex of the form aa . . . a, a ∈ A.

If we ignore the loops then, for a vertex v = a1a2 . . . ak one has

Outdeg(v) = Indeg(v) =

{

|A| − 1, if a1 = a2 = · · · = ak,
|A|, otherwise.

Hence, from Theorem 16.1(ii) it follows that a De Bruijn graph always possesses an

Euler circuit. Note that this applies even if we include the loops - we can imagine per-

forming an Euler circuit in the loopless graph and executing each loop the first time we

visit the corresponding vertex.

Example 16.2. (The Keycode Problem) In Sweden, apartment buildings are usually

equipped with electronic door locks and to get into the building one must punch in the

correct sequence of four decimal digits. Usually it is the case that it suffices to punch in

the correct four digits consecutively. So, for example, if the code is 1234 and you begin

by erroneously punching 121, then it suffices to continue with 234 to gain entrance, you

don’t need to “start all over” and punch in the 1 again. This feature means that a robber,

seeking to gain entrance but who has no clue what the correct code is, does not in the

worst case (for him !) need to punch in 4 × 104 = 40, 000 digits to be absolutely sure

of gaining entrance. Indeed, a sequence of just 104 + 3 = 10, 003 digits contains 104

different codes, so the question arises whether there exists such a sequence of 104 + 3
1

2

digits which includes every 4-digit code exactly once (and thus makes the robber’s job

easier by a factor of 4) ?

The answer is yes ! For consider the De Bruijn graph whose nodes are words of

length 3 in the alphabet {0, 1, . . . , 9}. Every directed edge in this graph corresponds

to a 4-digit code and it is easy to see that an Euler circuit, including the 10 loops,

corresponds to a sequence of 104 + 3 digits which includes every 4-digit code exactly

once.

We can “see” how this works by taking a simpler example, say A = {0, 1} and

k = 2. The De Bruijn graph is shown in Figure 16.1(i). It contains |A|k = 22 = 4
nodes. The sequence of edges in an Euler circuit (found via the usual greedy search) is

shown in Figure 16.1(ii). The corresponding sequence of |A|k+1 + |A| = 23 + 2 = 10
binary digits is

0001110100

and one may check that this includes each of the 23 = 8 three-digit binary words exactly

once.

Definition 16.3. A path in a graph G = (V, E) is called a Hamilton path if it visits

every vertex exactly once. A path which visits every vertex exactly once and then re-

turns via an edge to the starting vertex is called a Hamilton cycle.

The problem of deciding whether or not a graph contains a Hamilton path or cycle is

known to be much more difficult than the corresponding problem for Euler trails/circuits,

which we resolved completely in the previous lecture. Indeed, it is one of the oldest

known examples of a so-called NP-complete problem. It is beyond the scope of this

course to explain what this means, but it is a central notion in the subject of complexity

theory (of algorithms) and one reason why the subject of graph theory is so important

for theoretical computer science is that it is a rich source of concrete NP-complete prob-

lems - we will be seeing further examples in the coming lectures. Philosophically, large

classes of “difficult” algorithmic problems can be encoded as problems in graph theory,

and the decision problem for Hamilton paths/cycles is a classic example.

A common way of popularising the decision problem for Hamilton paths/cycles is to

consider it as a special case of the Travelling Salesman Problem. Here one thinks of the

nodes in a graph as cities and the edges as representing those pairs of cities for which

there exists a flight connection. The travelling salesman wishes to visit every city but

has no reason to visit a place more than once, if he can avoid it. Whether or not he can

achieve his goal is equivalent to asking if the graph has a Hamilton path and, assuming

he’d like to end up back home where he started, whether it has a Hamilton cycle1.

Intuitively, one can see why the decision problem for Hamilton paths is harder than

the corresponding problem for Euler trails, by considering that a Hamilton path in an

n-vertex graph uses n − 1 edges, while such a graph can in principle have anything

1In the full TSP, each edge e comes equipped with a non-negative weight w(e) ∈ R+, representing

the cost of the flight between those two cities. The problem is then to find a path in the graph which

visits every city at least once and for which the total cost is minimised. Our special case above is to set

w(e) = 1 for every e and ask if there exists a path of total cost |V | − 1, or a cycle of total cost |V |. We

will be returning to weighted graphs in Lecture 18.

3

from 0 to
n(n−1)

2
edges. Thus, for most graphs, a Hamilton path would use only a small

fraction of the total number of available edges, though not a negligible fraction, we still

have to use n− 1 edges after all2. In contrast, an Euler trail must use every edge exactly

once. This is a very stringent requirement, which leads to a very sharp (and restrictive

!) characterisation of those graphs for which it is possible.

This intuition would, however, naturally lead one to expect that, the denser the graph,

by which we mean the greater the quotient |E|/
(

n

2

)

, the greater the likelihood that

Hamilton paths or cycles exist. Indeed, in the extreme case, consider Kn. This pos-

sesses Euler circuits if and only if n ≥ 3 is odd, by Theorem 15.2(i). On the other hand,

for each n ≥ 3, Kn possesses n!
n
= (n − 1)! Hamilton cycles, since every permutation

of the n vertices corresponds to a Hamilton path and there are n possible starting points

for a given cycle.

However, high density on its own is not enough to guarantee Hamilton paths. Con-

sider, for example, a graph which is the union of Kn−1 and an isolated vertex. It contains
n−2
n−1

of all possible edges but obviously no Hamilton path. This might suggest that, in

addition to having lots of edges we would like them to be “spread evenly around”. There

is, in fact, a theorem which makes this precise:

Theorem 16.4. (Dirac’s Theorem) Let G = (V, E) be a graph with |V | = n > 2. If

deg(v) ≥ n/2 for every v ∈ V , then G possesses a Hamilton cycle.

PROOF: The proof is by contradiction. Fix an n > 2 and suppose the theorem is false

for this value of n, in other words, suppose there is an n-vertex graph which contradicts

the theorem. Then there must be such a graph with the maximum possible number of

edges. Pick any such graph and call it G. Thus we’re assuming that

(i) deg(v) ≥ n/2 for every v ∈ V (G),
(ii) G possesses no Hamilton cycle,

(iii) adding any edge to G will create a Hamilton cycle.

We will have a contradiction if we can prove that G had a Hamilton cycle all along. We

start by using (iii). Pick a pair of vertices x, y such that the edge {x, y} is not in G.

Adding it must create a Hamilton cycle and we may assume any such cycle includes

the edge {x, y}, as otherwise it would already have been present in G. So we can pick

such a cycle and let x be the “first” and y the “last” vertex, i.e.: the cycle reads

v1 = x → v2 → v3 → · · · → y = vn → x.

Now define the subsets S and T of {1, 2, . . . , n− 1} as follows:

S = {i : {x, vi+1} ∈ E(G)},

T = {i : {vi, y} ∈ E(G)}.

Note that |S| = deg(x) and |T | = deg(y). Hence, |S| ≥ n/2 and |T | ≥ n/2. But

both are subsets of {1, 2, . . . , n− 1}, so |S ∪ T | ≤ n− 1. It follows that S ∩ T 6= φ.

2A more rigorous way of developing this intuition is to firstly imagine the graph being chosen (uni-

formly) at random by inserting each of the
(

n

2

)

possible edges with probability 1/2, independent of all

other edges, and then to search for a Hamilton path by taking a “random walk” from a randomly chosen

starting vertex. It’s beyond the scope of the course to delve into this further, though we will come back

to this idea of choosing an n-vertex graph at random in Theorem 17.15.

4

Let i ∈ S ∩ T , so both {vi, y} and {x, vi+1} are edges in G. We can now construct a

Hamilton cycle in G as follows (see Figure 16.2):

v1 = x → v2 → · · · → vi → y = vn → vn−1 → · · · → vi+1 → x.

This is a contradiction, completing the proof.

Remark 16.5. (i) The theorem doesn’t hold for n = 2, since K2 satisfies the require-

ment that every vertex has degree at least 2/2 = 1, but obviously it has no Hamilton

cycle (though it does have a Hamilton path).

(ii) Dirac’s theorem gives a sufficient condition for existence of a Hamilton cycle, but

it’s a million miles away from being a necessary one. For example, the cycle Cn is a

Hamilton cycle for every n ≥ 3, but doesn’t satisfy Dirac’s condition once n ≥ 5.

Euler’s “other” theorem. There is one other theorem which is attributed to Euler and

which lies at the origins of graph theory as a subject. It is of a completely different

nature to Theorem 15.2. In particular, while the latter is an algorithmic result for an

optimization problem, his other result is geometrical/topological in nature.

Definition 16.6. A (multi)graph G is said to be planar if it is possible to draw the

graph on a plane surface without any two edges crossing.

Any such drawing of a planar graph is called a plane graph.

Example 16.7. The usual representations of Kn, 1 ≤ n ≤ 5, are given in Figure

16.3. For n ≤ 3 they are already plane. But K4 is also planar since one of the diagonals

can be moved outside the square (see Figure). It turns out, however, that K5 cannot be

untangled and is not planar (see Homework 3, Exercise 7). Hence, Kn is not planar for

any n > 5 either, because Kn contains copies of Km whenever n > m. So Kn is planar

if and only if n ≤ 4.

Definition 16.8. A graph G = (V, E) is said to be bipartite if there exist subsets

V1, V2 of V such that

(i) V1 6= φ, V2 6= φ
(ii) V1 ∩ V2 = φ
(iii) V = V1 ∪ V2

(iv) if {v, w} ∈ E, then one of v and w is in V1 and the other is in V2.

It is normal to write G = (V1, V2, E) for a bipartite graph. Pictorially, a bipartite graph

has two “sides” and every edge crosses from one side to the other.

Example 16.9. Let m, n ∈ Z+. The complete bipartite graph Km,n is the unique

bipartite graph G = (V1, V2, E), up to isomorphism, for which |V1| = m, |V2| = n,

{v1, v2} ∈ E for all v1 ∈ V1 and v2 ∈ V2. Note that Km,n has a total of mn edges.

The graphs K1, n, K2, n and K3, 3 are drawn in Figure 16.4. The drawing for K1, n is

plane. That for K2, n isn’t, but we can move one vertex to the right and get a plane draw-

ing (see Figure), so K2, n is also planar. However, it turns out that K3, 3 is not planar (see

Homework 3, Exercise 7) and hence that Km,n is planar if and only if min{m, n} < 3.

5

Non-planarity of K5 and K3, 3 can be deduced from the fundamental result on plane

graphs proven by Euler.

Theorem 16.10. Let G = (V, E) be a connected plane graph. Then

v − e+ r = 1, (16.1)

where v = |V | is the number of vertices, e = |E| is the number of edges and r is the

number of minimal enclosed regions.

Example 16.11. For the plane graph in Figure 16.5 one has v = 23, e = 33 and

r = 11, the regions being numbered as in the Figure. Hence v − e + r = 1, as the

theorem says.

PROOF OF THEOREM 16.10: The easiest way to prove the theorem is by induction

on the number of edges.

Base case: If G has one edge, then it must be a K2, hence v = 2, e = 1 and r = 0, so

yes, v − e+ r = 1 in this case.

Induction step: Suppose the theorem holds for all connected, plane graphs on n edges

and let G be a connected, plane graph on n+1 edges. We can certainly draw G one edge

at a time, in such a way that it is always plane and connected. Let G′ represent the draw-

ing when one edge remains to be added. By the induction assumption, v′ − e′ + r′ = 1,

where the primes represent the various quantities in G′ and e′ = e− 1 = n.

When we now add the last edge, since G is connected two possibilities arise:

Case 1: This last edge joins two existing vertices. Thus no new vertex is created at

this last step and v = v′. By joining two existing vertices we will create a new min-

imal enclosed region. However, we must create exactly one new such region, since

G is plane so the new edge does not cross any existing edge. Hence r = r′ + 1. So

v − e+ r = v′ − (e′ + 1) + (r′ + 1) = v′ − e′ + r′ = 1, v.s.v.

Case 2: This last edge joins an existing vertex to a new vertex. Thus one new vertex is

created at this last step and v = v′ + 1. The new vertex cannot subdivide any existing

edge, as otherwise we’d create two new edges at this last step, not one. Nor can the last

edge create a new enclosed region, as this would have to involve it crossing an existing

edge. Hence r = r′ in this case. Thus, v−e+r = (v′+1)−(e′+1)+r′ = v′−e′+r′ = 1,

v.s.v.

Remark 16.12. Sometimes you will see Euler’s Theorem for plane graphs written as

v−e+r = 2. Here one counts the “outside” of the graph as a region. Alternatively, one

thinks of the graph being drawn instead on a sphere. This version of Theorem 16.10 is

sometimes easier to worth with - see, for example, Demo5, Exercise 3.

Before leaving the subject of planarity, I wish to state the fundamental result about

which graphs are planar. It is well beyond the scope of this course to prove the theorem

6

below, so the rest of this section is not examinable.

Definition 16.13. Let G = (V, E) and G′ = (V ′, E ′) be graphs. We say that G′ is

a one-step subdivision of G if3

(i) V ′ = V ⊔ {x}, for some single vertex x
(ii) there is an edge {v, w} ∈ E such that E ′ = [E ∪ {{v, x}, {x, w}}]\{{v, w}}.

In words, G′ is gotten from G by inserting an extra vertex along one of its edges and

thus dividing that edge into two.

More generally, we say that G′ is a subdivision of G if G′ can be obtained from G by

a finite sequence of one-step subdivisions.

Theorem 16.14. (Kuratowski’s Theorem) A graph G is planar if and only if it con-

tains no subgraph which is a subdivision of K5 or K3, 3.

Note that in Examples 16.7 and 16.9 we have already discussed the “easy half” of

this theorem, namely to show that neither K5 nor K3, 3 is planar and hence that G is not

planar if it possesses a subgraph which is a subdivision of either of them. The much

harder part is to prove that these are the only two minimal patterns which prevent a

graph being planar.

3⊔ denotes disjoint union.

