
7th Lecture: 3/2

The second part of the course serves as an introduction to both number theory and to

abstract algebra (groups, rings, modules, fields). The focus is primarily on the latter,

since a grounding in abstract algebra is useful for more advanced studies in mathematics

more generally. We will, however, show how some classical material in number theory

can be presented using this abstract algebraic language and machinery.

A large part of the corpus of knowledge in number theory deals with prime numbers.

In our first lecture, we will present the two most fundamental results about these: the

infinitude of primes and the uniqueness of prime factorisation (the so-called Fundamen-

tal Theorem of Arithmetic (FTA)). These were already proven in Euclid’s Elements and

those proofs remain state-of-the art. Hence, this first lecture does not use any of the ab-

stract algebraic machinery developed subsequently and so this set of notes can be read

independently of what follows. Note, however, three things:

(i) Euclid’s algorithm, which is the key tool for proving FTA, will also be employed

later on, for computing inverses in finite modular groups Z×

n (see Lecture 9).

(ii) The notion of “prime factorisation” can be generalised from the integers to so-

called algebraic number rings. The study of these comprises the subject known as

Algebraic Number Theory. Familiarity with the general techniques of abstract algebra

is needed if one wants to pursue study in that direction. In particular, the FTA can be

generalised to those algebraic number rings which are so-called unique factorisation

domains, a subset of which belong to the class of Euclidean rings.

(iii) For further study in abstract algebra one is recommended to take the course

Algebraic Structures offered by the math department. For further studies in number

theory, there are Master’s level courses in Algebraic Number Theory and Analytic Num-

ber Theory. In more recent times, the subject of Combinatorial Number Theory has

also become a recognised field in its own right.

Prime Numbers. I will assume familiarity with some basic concepts, definitions, no-

tation, terminology and results from elementary number theory. Consult Chapter 3 of

Vol. 1 of the course book if necessary.

Definition 7.1. A positive integer p ∈ Z+ is called a prime number if

(i) p ≥ 2, and

(ii) the only positive divisors of p are 1 and p itself, in other words

a ∈ Z+ ∧ a | p ⇒ a = 1 ∨ a = p.

Proposition 7.2. Every positive integer can be written as a product of primes.

PROOF: Strong induction on n ∈ Z+. n = 1 is an empty product of primes. Sup-

pose each integer 1, 2, . . . , n can be written as a product of primes and consider n+1.

Case 1: n+ 1 is prime. Then just write n+ 1 = n+ 1.

Case 2: n + 1 is not prime. Then, by definition, there exist integers u, v such that

n + 1 = uv and each of u and v is at most n. By the induction assumption, each of

u and v is a product of primes. Concatenating these products gives a representation of
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n+ 1 as a product of primes.

Theorem 7.3. (Infinitude of primes) There are infinitely many primes.

PROOF: Suppose the contrary. Then one can make a finite list of all the primes, say

p1, p2, . . . , pn. Consider the number

N =
n
∏

i=1

pi + 1.

By construction, N leaves remainder one upon division by any pi. Since each pi ≥ 2,

this means N is not divisible by any pi. But N has some prime factorisation, by Propo-

sition 7.2. Hence, N must be divisible by some prime not on the list, which contradicts

the assumed completeness of the list.

Theorem 7.4. (Fundamental Theorem of Arithmetic) Every positive integer has a

unique representation as a product of primes.

By Proposition 7.2, it remains to prove uniqueness. The key lemma in the proof of

FTA is the following:

Key Lemma 7.5. Let p be a prime and let a, b by any positive integers. Then

p | ab ⇒ p | a ∨ p | b.
We postpone the proof of this result and first show how it leads to FTA. First we note a

corollary:

Corollary 7.6. Let p be a prime, let n ≥ 2 and let a1, a2, . . . , an be any positive

integers. Then

p |
n
∏

i=1

ai ⇒
n
∨

i=1

p | ai.

PROOF OF COROLLARY: Induction on n. The case n = 2 is Lemma 7.5. Suppose

the corollary holds for some n ≥ 2 and let a1, a2, . . . , an+1 be positive integers such

that p divides their product. Set b1 :=
∏n

i=1
ai and b2 := an+1. Thus p | b1b2 and so,

by Lemma 7.5, either p | b1 or p | b2. In the latter case, p | an+1 and we are done. In the

former case, we’re saying that p | ∏n

i=1
ai. But then by the induction assumption we

have that p | ai, for some 1 ≤ i ≤ n, and again we are done.

PROOF OF THEOREM 7.4 ASSUMING COROLLARY 7.6: Let n ∈ Z+ and suppose

we are given two representations of n as a product of primes, say

n =
k
∏

i=1

pαi

i =
l

∏

j=1

q
βj

j . (7.1)

Consider some pi. In particular, (7.1) says that pi divides the product of primes (which

will include repititions whenever some βj > 1, but that doesn’t matter)
∏l

j=1
q
βj

j .
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Hence, by Corollary 7.6, there must be some qj such that pi | qj . But both pi and qj
are primes, so this means that pi = qj .

In other words, every prime in the first product in (7.1) must also appear in the sec-

ond product and vice versa. It is then also easy to see (by induction, if you like) that the

powers must also match, i.e.: αi = βi for each i. Hence, the two representations of n
involve exactly the same prime powers, v.s.v.

So to complete the proof of Theorem 7.4, it remains to prove Lemma 7.5. It will

in turn follow from the next result, Proposition 7.8 - note that the result is implicit in

Euclid’s Elements and that its modern name was only applied later (Bezout lived in the

18th century). First a definition, in case you’ve forgotten:

Definition 7.7. Let a, b ∈ Z+. The number d ∈ Z+ is called the greatest common

divisor of a and b, and denoted GCD(a, b), if

(i) d is a common divisor of a and b, i.e.: d | a and d | b
(ii) it is the largest integer with this property, i.e.: if c | a and c | b then c ≤ d.

Proposition 7.8. (Bezout’s Lemma) Let a, b ∈ Z+ and let d be their GCD. Then

there exist x, y ∈ Z such that ax+ by = d.

PROOF OF LEMMA 7.5 ASSUMING PROPOSITION 7.8: We prove the logically equiv-

alent, contrapositive statement, namely that if p divides neither a nor b then it doesn’t

divide ab either.

Since p doesn’t divide a and p is prime, it must be the case that GCD(p, a) = 1.

Hence, by Proposition 7.8, there exist integers x, y such that

ax+ py = 1. (7.2)

Similarly, if p doesn’t divide b then there must exist integers z, w such that

bz + pw = 1. (7.3)

Multiplying (7.2) and (7.3) together, we get

1 = (ab)(xz) + p(axy + bzw) + p2(yw). (7.4)

Now if p divided ab, then it would divide the whole RHS of (7.4). But then it would

have to divide the LHS, namely 1, which it can’t since p ≥ 2. Hence, p doesn’t divide

ab, v.s.v.

So now we’ve reduced the complete proof of Theorem 7.4 to that of Proposition 7.8.

The latter is due to the fact that Euclid’s Algorithm finds the GCD of two given inputs

a and b and, when run backwards, yields an explicit solution of ax+ by = d. I will not

write out the full proof of this for arbitrary a and b because it would be a lot of ordbajs.

Instead, I will just show how things work for an example. Hence, after presenting and

discussing that example, I consider the proof of Theorem 7.4 to be complete.

Example 7.9. (Euclid’s algorithm) Let a = 1368, b = 750. We apply Euclid’s al-

gorithm to first find d = GCD(a, b) and then to find integers x, y such that ax+by = d.
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Step 1: Find d.

The algorithm is just repeated division-and-remainder computation.

1368 = 1 · 750 + 618,

750 = 1 · 618 + 132,

618 = 4 · 132 + 90,

132 = 1 · 90 + 42,

90 = 2 · 42 + 6,

42 = 7 · 6 + 0.

The algorithm terminates once a remainder of zero is obtained. It is clear that this

must happen after finitely may steps, since the remainders are strictly decreasing and

non-negative. The claim is that the last non-zero remainder equals the GCD of the two

original numbers. This is proven in two steps:

CLAIM 1: The last non-zero remainder is a common divisor of the two original num-

bers, a and b. To understand why, follow the above example backwards step-by-step.

In the last step we get remainder zero, which means that the last non-zero remainder,

6 in this case, divides the previous remainder, 42 in this case. Now go to the second

last step. That 6 divides 42 implies it divides the whole of the RHS. Hence it divides

the LHS, 90 in this case, or the previous remainder in general. Now go to the previous

step. Since 6 divides both 42 and 90, it must also divide 132. And so on. The last non-

zero remainder is a divisor of every previous remainder. When we get to the top two

steps, we deduce from the same reasoning that it divides the two original numbers, v.s.v.

CLAIM 2: Any common divisor of a and b must also divide the last non-zero re-

mainder in Euclid’s algorithm (see Remark 7.10 below). To see this, work your way

forwards through the steps of the algorithm. Let c be a common divisor of a and b.
The first step implies c will also divide the first remainder, in this example 618. Thus

c divides both 750 and 618. From the second step, it now follows that 6 divides the

next remainder 132. And so on. Any common divisor of a and b muast also divide

each remainder computed by the algorithm. In particular, it divides the last non-zero

remainder, v.s.v.

Step 2: Go backwards through the steps of the algorithm to obtain an expression

d = ax+ by.
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In our example, the sequence of computations will look as follows:

6 = 90− 2 · 42
= 90− 2(132− 90)

= 3 · 90− 2 · 132
= 3(618− 4 · 132)− 2 · 132

= 3 · 618− 14 · 132
= 3 · 618− 14(750− 618)

= 17 · 618− 14 · 750
= 17(1368− 750)− 14 · 750

= 17 · 1368− 31 · 750.
Hence we have written d = ax + by, with x = 17 and y = −31. It’s clear that things

will work out the same way for any example.

Remark 7.10. As noted in Claim 2 above, Euclid’s algorithm shows that the GCD

of two positive integers a and b doesn’t just have the property that any common divisor

c of a and b satisfies c ≤ d, but in fact c | d. This fact also follows immediately from

FTA itself. We’ve all learned FTA in school but, as we show here, it requires Euclid’s

algorithm for its proof.

Remark 7.11. Similarly, once one knows that FTA is true, an alternative method for

finding GCD of two given inputs is simply to completely factorise both and pluck out

the common prime factors. For example,

1368 = 23 · 32 · 19, 750 = 2 · 3 · 53 ⇒ GCD(1368, 750) = 2 · 3 = 6.

The disadvantage with this approach is that Integer Factorisation is a notorious exam-

ple of a problem whch appears to be algorithmically difficult. In fact, for generic large

inputs a, b, Euclid’s algorithm runs much faster than any known factorisation algorithm

(see Homework 2).

Linear Diophantine Equations. A Diophantine equation is a polynomial equation

with integer coefficients, but where only integer solutions are considered valid. The

study of Diophantine equations is one of the major subjects in number theory. The

equation is linear if every variable “appears to the first degree”, which is the same thing

as saying that, geometrically, the equation represents a hyperplane in Euclidean space

(see Remarks 7.14 and 7.15 below). Euclid’s algorithm, via Bezout’s lemma, leads eas-

ily to a complete theory of linear Diophantine equations, as we now show.

First consider a linear Diophantine equation in one variable. It must read ax = b,
where a and b are integers. Clearly, it has an integer solution if and only if a | b, in

which case the solution is unique, namely x = b/a. So far, so trivial. The important

case is that of two variables.
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Theorem 7.12. Let a, b, c ∈ Z. Then the Diophantine equation

ax+ by = c (7.5)

either has no solution or has infinitely many. The latter occurs if and only if d | c, where

d = GCD(a, b). In that case, if x0, y0 are any integers satisfying ax0 + by0 = d and

c = md, then the general solution of (7.5) is given by

x = mx0 +

(

b

d

)

n,

y = my0 −
(a

d

)

n, n ∈ Z. (7.6)

PROOF: Firstly, since d | a and d | b, d will also divide any integer linear combination

ax+ by. Hence d must divide c, if (7.5) is to have a solution.

Secondly, we know by Proposition 7.8 that there exist integers x0, y0 satisfying ax0+
by0 = d. If c = md then by direct insertion into (7.5) we see that any pair (x, y) given

by (7.6) will also satisfy (7.5). So it remains to show that (7.5) has no further solutions.

So let (x0, y0) ∈ Z
2 be any pair satisfying ax0+by0 = d and let (x, y) be any integer

solution to (7.5). Thus

ax+ by = c (7.7)

and

a(mx0) + b(my0) = md = c. (7.8)

Subtracting (7.8) from (7.7) we get

a(x−mx0) = b(my0 − y).

We can divide through by d to get

a

d
(x−mx0) =

b

d
(my0 − y). (7.9)

Lemma 7.13. For any integers u, v, w we have

u | vw ∧ GCD(u, v) = 1 ⇒ u |w.

The lemma follows immediately from FTA. For if u divides vw then, by FTA, it

means that every prime power appearing in the unique prime factorisation of u also ap-

pears in that of vw. But if GCD(u, v) = 1 it means that the prime factorisations of u
and v have nothing in common. But the prime factorisation of vw is just the concatena-

tion of those of v and w. Hence, the entire prime factorisation of u must appear in that

of w, i.e.: u |w, v.s.v.

Now apply Lemma 7.13 to (7.9). By definition of d we have that GCD
(

a
d
, b

d

)

= 1.

But (7.9) says, in particular, that b
d

divides the product a
d
(x−mx0). Hence, by Lemma

7.13, b
d

must divide x − mx0. In other words, there must exist an integer n such that

x−mx0 = n
(

b
d

)

, v.s.v. Substituting this expression for x into (7.5) directly yields that

also y = my0 − n
(

a
d

)

, v.s.v.

Remark 7.14. A geometrical interpretation of Theorem 7.12 is the following. The
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equation ax+ by = c represents a line in R
2. The theorem says that this line intersects

the integer lattice Z
2 if and only if GCD(a, b) divides c and, in that case, that the inter-

section consists of an infinite sequence of evenly spaced points.

Remark 7.15. Theorem 7.12 can be generalised to an arbitrary number of variables.

Given integers a1, a2, . . . , an and c, it is clear that a necessary condition for the exis-

tence of an integer solution to the Diophantine equation

a1x1 + a2x2 + · · ·+ anxn = c (7.10)

is that GCD(a1, a2, . . . , an) divides c. Now, by repeated application of Euclid’s algo-

rithm (a total of n − 1 times), one can show that this condition is also sufficient and

that the general solution then contains n − 1 free integer variables. See Demo-3 for a

worked example in three variables. Geometrically, (7.10) represents a hyperplane in R
n

and this hyperplane intersects Zn if and only if GCD(a1, a2, . . . , an) divides c. In that

case, the intersection is an (n− 1)-dimensional lattice in the hyperplane.

Remark 7.16. Non-linear Diophantine equations are ... well ... hard. In studying

them, one sometimes relaxes the restriction on seeking only integer solutions to allow-

ing rational ones. But even in one variable and degree 2, it is not trivial to show that the

equation x2 = 2, for example, has no rational solutions. This is the statement that
√
2

is an irrational number. The usual proof is the following:

Suppose
√
2 were rational. We can write any rational number in lowest terms, hence

this would mean there existed rationals p, q satisfying
√
2 = p/q and GCD(p, q) = 1.

Squaring both sides we get 2 = p2/q2 ⇒ p2 = 2q2. In particular, p2 is an even number,

which means p is also even. Thus p = 2r, for some integer r. Substituting,

p2 = 2q2 ⇒ (2r)2 = 2q2 ⇒ q2 = 2r2.

Hence q2 is also even, and thus q. But now both p and q are even, contradicting that

GCD(p, q) = 1.

Remark 7.17. The most famous family of Diophantine equations is

xn + yn = zn n ∈ Z+, fixed.

n = 1: The equation is x + y = z. Clearly, it has infinitely many integer solutions and

these form a 2-dimensional sublattice of Z3, consisting of all points {(x, y, x + y) ∈
Z

3 : x, y ∈ Z}.

n = 2: The equation reads x2 + y2 = z2. Positive integer solutions (x, y, z) are

called Pythagorean triples, since Pythagoras’ Theorem implies they can be made the

lengths of the sides of a right-angled triangle. One Pythagorean triple is (3, 4, 5). This

gives rise to infinitely many more: (3n)2 + (4n)2 = (5n)2 for any n ∈ Z. A primitive

Pythagorean triple is one for which GCD(x, y, z) = 1. The following theorem isn’t

too hard to prove, but we don’t have time for it:

Theorem 7.18. There are infinitely many primitive Pythagorean triples. In any such
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triple, z is odd and exactly one of x and y is even. WLOG, assuming y is even, the

complete set of primitive Pythagorean triples is given by

x = b2 − a2, y = 2ab, z = b2 + a2 where 1 ≤ a < b and GCD(a, b) = 1.

n ≥ 3: Fermat’s Last Theorem, proven by Andrew Wiles in 1994, asserts that there are

no integer solutions with xyz 6= 0.

Remark 7.19. In the case of linear Diophantine equations, Euclid’s algorithm provides

an efficient means of deciding whether a given equation has an integer solution or not,

and for finding such a solution when one exists. A natural question to ask is whether

there is any algorithm which can take as input an arbitrary Diophantine equation and,

in finite time, determine whether or not the equation has an integer solution (and, in the

best case, find one when they exist). This is Hilbert’s 10th Problem and, famously, the

answer is “No such algorithm exists”. This was proven by Matiyasevich in 1970 and is

an important result in theoretical computer science.


