
9th Lecture: 10/2

To begin with, some more words on Example 8.14+ from the last day. In the notation

of Figure 8.1, every element of S3 can be written in terms of the elements denoted g
and h. These elements are said to form a (minimal) set of generators for S3. In order

to determine the structure of the group precisely, we also need to specify the so-called

relations between the generators. Once again, we seek a minimal set of relations, such

that any other relation is a consequence of these and the general properties of any group

operation. For a group generated by two elements, it suffices to give the so-called order

of each generator and the commutator between them.

Definition 9.1. Let G be a group and g ∈ G. The order of g is the least positive

integer n ∈ Z+ such that gn = 1. If no such n exists we say that g has infinite order.

Definition 9.2. Let G be a group and x, y ∈ G. The commutator of x and y is the

group element [x, y] := x−1y−1xy.

NOTE: In many books you’ll see the commutator of x and y defined as xyx−1y−1. It

doesn’t matter which definition you use as long as you’re consistent.

Observation 9.3. If G is a finite group then every element g ∈ G has finite order.

For, since G is finite, the elements gn, n ∈ Z+, can’t all be distinct. Hence there must

exist some 0 < i < j such that gi = gj . Since g is a group, the element (gi)−1 exists

and it is clear that (gi)−1 = g−i. Thus g−i · gi = g−i · gj ⇒ 1 = gj−i and so the order

of g is at most j − i.
For a more precise statement, see Corollary 9.15 below.

Observation 9.4.

[x, y] = 1 ⇔ x−1y−1xy = 1

⇔ x(x−1y−1xy) = x · 1 = x
assoc
⇔ (xx−1)y−1xy = x

⇔ y−1xy = x

⇔ y(y−1xy) = yx
assoc
⇔ (yy−1)xy = yx

⇔ xy = yx.

In other words, the commutator of x and y equals 1 if and only if x and y commute

(which explains the terminology). In particular, G is abelian if and only if [x, y] =
1 ∀ x, y ∈ G.

Returning to the example of S3, we get the following relations:

(i) g3 = 1 (120-degree rotation times three is the identity)

(ii) h2 = 1 (reflection times two is the identity)
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(iii)

[g, h] = g−1h−1gh = g2hgh = g(ghgh) = g(gh)2 = g · 1 = g.

We can put the generators and relations together into a so-called presentation of S3:

S3 =< g, h : g3 = h2 = 1, [g, h] = g > .

The point is that a presentation of a group gives a complete, but purely algebraic de-

scription of it. All properties of the group can be derived purely algebraically from the

presentation, using the group axioms (Definition 8.15).

Definition 9.5. Let G be a group and H a subset of G. H is said to be a subgroup

of G if

(i) H is closed under the group operation

(ii) 1 ∈ H
(iii) h ∈ H ⇒ h−1 ∈ H .

Remark 9.6. In the case of a finite group G, conditions (ii) and (iii) are superfluous

- see Homework 2.

Remark 9.7. In any group G there are at least two possibilities for a subgroup, ei-

ther H = {1} or H = G. The former is called the trivial subgroup and the latter is said

to be an improper subgroup. Every other subgroup is said to be proper.

Example 9.8. Let’s list all the subgroups of S3. First we have the trivial examples

guaranteed by Remark 9.7:

H1 = {1}, H2 = S3.

Secondly, any reflection plus the identity will form a subgroup of size 2:

H3 = {1, h}, H4 = {1, gh}, H5 = {1, g−1h}.

Finally, the rotations form a subgroup of size 3:

H6 = {1, g, g2 = g−1}.

Note that the size of every subgroup is a divisor of 6, the size of S3 itself. This is not a

coincidence - see Theorem 9.13 below.

Definition 9.9. Let G be a group, H a subgroup of G and x ∈ G. The set

Hx = {g ∈ G : g = hx ∃h ∈ H}

is called a (right) coset of H in G.

Proposition 9.10. Let G be a group, H a subgroup of G and x, y ∈ G. Then ei-

ther Hx ∩Hy = φ or Hx = Hy.

PROOF: Suppose Hx ∩ Hy is non-empty. Thus there exist h1, h2 ∈ H such that

h1x = h2y. Since G is a group we deduce that

x = h−1

1 (h1x) = h−1

1 (h2y) = (h−1

1 h2)y.
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Since H is a subgroup, the element h−1

1 h2 also belongs to H . Thus x = hy ∃h ∈ H .

Now let g ∈ Hx, so g = h3x for some h3 ∈ H . Then g = h3(hy) = (h3h)y = h4y,

since H is closed. Thus g ∈ Hy so we have shown that Hx ⊆ Hy. Clearly, a com-

pletely analogous argument shows the reverse inclusion and so Hx = Hy, v.s.v.

Remark 9.11. One can formulate Proposition 9.10 in terms of equivalence relations.

Let G be a group and H a subgroup. Define a relation ∼H on G by

x ∼H y ⇔ xy−1 ∈ H.

I leave it as an exercise to show that ∼H is an equivalence relation on G and that the

equivalence classes are the right cosets of H .

Remark 9.12. One can just as well work with left cosets xH = {xh : h ∈ H}.

As usual, the important thing is to be consistent. The left cosets of H will also partition

G (analog of Prop. 9.10.) and the corresponding equivalence relation is x ∼ y ⇔
y−1x ∈ H . Note that if G is abelian then xH = Hx ∀ x ∈ G. This may even be true in

some non-abelian settings, e.g.: G = S3 and H = H6 in Example 9.8.

Theorem 9.13. (Lagrange’s Theorem for Groups) Let G be a finite group and H
a subgroup. Then |H| divides |G|.

PROOF: This will follow immediately from Proposition 9.10 if we can show that all

the right cosets of H have the same size. I claim that every right coset has size |H|. Let

Hx be a coset. We have the natural map h 7→ hx from H to Hx, so it suffices to verify

that this map is injective. But

h1x = h2x ⇒ (h1x)x
−1 = (h2x)x

−1 ⇒ h1(xx
−1) = h2(xx

−1) ⇒ h1 = h2, v.s.v.

Definition 9.14. Let G be a group and g ∈ G. Consider the set of all powers of g, i.e.:

H = {gn : n ∈ Z}. This subset of G
(i) is closed under the group operation: gmgn = gm+n

(ii) contains the identity: 1 = g0

(iii) contains inverses: (gn)−1 = g−n.

Hence, H is a subgroup of G. It is called the cyclic subgroup generated by g and de-

noted H =< g >.

Corollary 9.15. Let G be a finite group and g ∈ G. Then the order of g divides

|G| and g|G| = 1.

PROOF: The first statement follows from Theorem 9.13, applied to H =< g >. This

is because, if n is the order of g, then the powers 1 = g0, g = g1, g2, . . . , gn−1 are all

distinct elements of G (otherwise gm = 1 would hold for some 1 ≤ m < n, see Ob-

servation 9.3) and every power of g coincides with one of these: gqn+r = (gn)q · gr =
1q · gr = gr. In other words, | < g > | equals the order of g.

The second statement then follows immediately also: g|G| = (g|H|)|G|/|H| = 1|G|/|H| =
1, since the quotient |G|/|H| is an integer, by Theorem 9.13.
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Corollary 9.15 will be used to prove the Euler/Fermat Theorem in modular arithmetic

in the next lecture.

Rings and Fields. In the last two lectures I have given a brief introduction to Group

Theory. In a course on abstract algebra you will go further and also get a “proper” intro-

duction to rings and fields. Here I am just going to give the bare minimum (definitions

and a couple of examples) which we will need when we turn to modular arithmetic.

Definition 9.16. (I) Let R be a set equipped with two binary operations, the default

notation and terminology for which are + (addition) and × (multiplication). The triple

(R, +, ×) is said to be a ring if the following hold:

(i) (R, +) is an abelian group (the identity element for + is denoted 0)

(ii) × is associative

(iii) × is distributive over +, meaning that the following two equations hold for all

a, b, c ∈ R:

a× (b+ c) = (a× b) + (a× c),

(b+ c)× a = (b× a) + (c× a).

(II) If there exists an identity for × (usually denoted 1) then the ring is said to be a ring

with unity.

(III) If × is commutative then the ring is said to be a commutative ring.

(IV) If there exists an identity for × and every non-zero element of R possesses a mul-

tiplicative inverse, then the ring is said to be a division ring.

(V) A commutative division ring is called a field.

Examples 9.17. (I) (Z, +, ×) is a ring with unity, under ordinary addition and multi-

plication of numbers.

(II) (Q, +,×) is a field and is the smallest field containing the ring Z. R and C are

also fields under ordinary addition and multiplication.

(III) For n ≥ 2, Mn(R) is a non-commutative ring with unity, under addition and mul-

tiplication of matrices. Note that it is not a division ring, since not all non-zero matrices

are invertible. Nor could we get a division ring by replacing Mn(R) by GLn(R), since

the latter is not closed under matrix addition, i.e.: the sum of two invertible matrices

need not be invertible.

Note also that one can replace R by either Q or C, since the operations of matrix

addition and multiplication preserve membership of these sets (even matrix inversion

does so, by the adjoint formula for a matrix inverse). Hence, more abstractly, one can

replace R by any field.

(IV) More generally, we can form rings of functions under pointwise addition and

composition of functions. But in order for the former to make sense, it has to be

possible to add elements in the underlying set on which the functions are defined.

Hence: let (G, +) be an abelian group. Then (GG, +, ◦) is a ring, where GG is the

set of all functions from (the set) G to itself, + is pointwise addition of functions
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((f1+f2)(g) = f1(g)+f2(g)) and ◦ is function composition ((f1 ◦f2(g) = f1(f2(g))).
Note that the distributive laws hold:

f1 ◦ (f2 + f3) = (f1 ◦ f2) + (f1 ◦ f3), (f1 + f2) ◦ f3 = (f1 ◦ f3) + (f2 ◦ f3).

The ring GG always has a unity (the identity function) but is non-commutative when-

ever |G| > 1 (see Example 8.14). The invertible elements are the permutations of G,

hence GG is in general not a division ring and we can’t get a division ring by restricting

to the subset SG of GG (the set of permutations of G) because the sum of two permuta-

tions won’t in general be a permutation.

Remark 9.18. The ring containing a single element 0 and where 0 + 0 = 0× 0 = 0 is

called the trivial ring. Regarding item (IV) in Definition 9.16, one can show that, in any

non-trivial ring, the zero element can’t have a multiplicative inverse - see Homework 2.


