
21st Lecture: 10/3

Stable matchings. These notes are based on the article

D. Gale and L.S. Shapley, College Admissions and the Stability of Marriage, Amer.

Math. Monthly 69, No. 1 (1962), 9–15.

The general setup is that we are given the following data:

Dataset 21.1. Given are

• two disjoint, finite sets X, Y .

• for each x ∈ X a permutation πx of the elements of Y . We shall write y >x y′

if y appears before y′ in the permutation πx. We shall say that x ranks y above

y′.

• analogously, for each y ∈ Y , a permutation πy of the elements of X .

A matching will refer to a set of pairs (xi, yi) such that no element of X ∪Y appears

in two or more pairs. The elements xi and yi are said to be matched. The number of pairs

is called the size of the matching and is denoted |M |. Obviously, |M | ≤ min{|X|, |Y |}.

Definition 21.2. A matching M will be called stable if there does not exist any pair

(x, y) 6∈ M such that

- x is either unmatched or is matched to some y′ such that y >x y′, and similarly

- y is either unmatched or is matched to some x′ such that x >y x
′.

Note that, for a stable matching M , one must have |M | = min{|X|, |Y |}. For if |M |
were strictly smaller, then there would be at least one pair (x, y) such that neither x nor

y was matched to anyone, and any such pair satisfies the conditions of Definition 21.2.

For an arbitrary matching M , a pair (x, y) satisfying the conditions of Definition

21.2 is said to cause instability.

Theorem 21.3. (Gale-Shapley theorem) Given a dataset 21.1, there always exists

a stable matching.

The obvious application of this result is that X is a set of men and Y a set of women

(or vice versa) and we want to matchmake in such a way that (i) as few people as pos-

sible are left single (ii) there will be no divorces. The theorem says that both conditions

can be satisfied simoultaneously. For the proof, we will refer to the elements of X as

boys and to those of Y as girls. A reader who finds this sexist is free to invent their own

terms.

The proof involves the description of an explicit procedure for finding a stable match-

ing, which is now known as the Gale-Shapley algorithm. The procedure involves a se-

quence of rounds, which we can describe inductively:
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ROUND 1: Each boy x proposes to his favorite girl, i.e.: to the element y = y(x)
appearing first in the permutation πx. Each girl y who receives more than one proposal

rejects all but one of them, namely that from the boy who, amongst the ones who have

actually proposed to her, she ranks highest in her permutation πy. This boy she places

on her string.

ROUND k: Each boy who has received a rejection in round k − 1 proposes to his

favorite girl amongst those from whom he has not yet received a rejection (equivalently,

those to whom he has not yet proposed), provided at least one such girl remains. Each

girl who receives at least one proposal in round k compares these proposals with the

boy currently on her string and issues a rejection to everyone except the one she ranks

highest. This boy is now placed on her string instead.

The procedure terminates at a round in which no rejections are issued, since then no

boy will make any further proposals and so nobody does anything more. Since the boys

will keep proposing as long as there is a girl left to propose to and since every girl has

at most one boy on her string at any point, it is easy to see that the procedure will in-

deed terminate and, at that point, each girl who received at least one proposal will have

exactly one boy on her string and no two girls will have the same boy on their string.

Thus, if every girl now accepts the boy on her string, then exactly min{|X|, |Y |} pairs

will be matched. It remains to show that this matching is stable.

So suppose, by way of contradiction, that there is a pair (x, y) which causes instabil-

ity. Then x must either be unmatched or matched with some y′ such that y >x y′, and y

must either be unmatched or matched with some x′ such that x >y x
′. Since x ended up

either single or with y′, he must have at some point proposed to y′ (and, if single, been

rejected by her). Since he prefers y to y′, this means he must at some earlier point have

been rejected by y. But if y rejected x, she must have received at least one proposal

from an x′′ whom she ranked higher than x. In that case, there is no way x′ could have

ended up on her string, since she prefers x′′ to x′. And there is no way she could have

ended up single, since any girl who receives at least one proposal will be matched at the

end. Contradiction !

Examples 21.4. As our first example, we consider an extreme setting where there is

universal agreement amongst the boys about how to rank the girls and vice versa. So

let |X| = m, |Y | = n. We can set X = {1, . . . , m} and Y = {1′, . . . , n′} such that

i < j means i is ranked above j by every girl and i′ < j′ means i′ is ranked above j′ by

every boy. Here we claim that there is a unique stable matching M , namely that which

matches (i, i′), for i = 1, . . . , min{m, n}. For suppose there was some other stable

matching M∗. Since M∗ 6= M , there must be a smallest i such that (i, i′) 6∈ M∗. Thus

(j, j′) ∈ M∗ for all 1 ≤ j ≤ i − 1. Hence, either i is unmatched in M∗ or matched

to some k′ where k > i. Similarly, either i′ is unmatched in M∗ or matched to some l

where l > i. In all four cases, it is easy to see that the pair (i, i′) causes instability in

M∗, contradiction !
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For our second example, consider the “opposite extreme” where the rankings are as

different as they possibly could be. In this case, there can be many different stable

matchings - see Example 1 in the Gale-Shapley paper. In particular, when looking for a

stable matching one has three a priori strategies: (i) try to get the best possible outcome

for the boys (ii) try to get the best-possible outcome for the girls (iii) make everyone

compromise.

Our third example is Example 2 in the G-S paper. This example illustrates a setting in

which there is a unique stable matching in which nobody gets their top choice. Welcome

to real life !!

For further examples, see Demo6 and Gamla Tentor.

Definition 21.5. Given a dataset 21.1, an element x ∈ X and an element y ∈ Y ,

we say that y is a possible stable match for x, and vice versa, if there exists at least one

stable matching M such that (x, y) ∈ M .

Given a dataset 21.1, an element x ∈ X and a stable matching M , we say that M

is optimal for x if there is no stable matching M ′ in which x is matched to someone

he ranks higher than his match in M . If x is unmatched in M , this means that there is

no stable matching at all in which x is matched. Optimality for an element y ∈ Y is

defined analogously.

Theorem 21.6. The matching produced by the Gale-Shapley algorithm is always opti-

mal for every element of X , i.e.: for everyone in the group that does the proposing.

Proof: It suffices to prove, by induction on k, that in Round k of the algorithm, no

boy will be rejected by a possible stable match.

ROUND 1: Suppose, by way of contradiction, that some element x ∈ X is rejected

by a possible stable match y ∈ Y . Let M be a stable matching in which x is matched to

y. Since y rejected x, she must have received another proposal from some x′ such that

x′ >y x. In Round 1, the boys propose to their favorites, so y must be the favorite of

x′. Since (x, y) ∈ M , thus (x′, y) 6∈ M . So either x′ is unmatched in M or matched to

some y′ such that y′ <x′ y. In either case, the unmatched pair (x′, y) causes instability

in M , since y prefers x′ to x and y is the favorite of x′. Contradiction !

ROUND k: Assume that no rejections have been issued by possible stable matches in

the first k − 1 rounds and suppose, by way of contradiction, that some element x ∈ X

is rejected by a possible stable match y ∈ Y in Round k. Let M be a stable matching

in which x is matched to y. Since y rejected x in Round k, she must have received at

least one further proposal, at or before Round k, from some x′ such that x′ >y x. We

consider two cases:

Case 1: (x′, y′) ∈ M for some y′ >x′ y. The fact that x′ proposed to y at or before

Round k means he must have been rejected by everyone he ranked higher, in particular

by y′, at or before Round k − 1. But this contradicts our inductive asumption, since y′

is a possible stable match for x′.
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Case 2: Either x′ is unmatched in M or matched to some y′ such that y′ <x′ y. But

then, for the same reason as in Round 1, the unmatched pair (x′, y) would cause insta-

bility in M , contradiction !

Stable assignments. One can extend the setting of the previous discussion by intro-

ducing an asymmetry between X and Y , namely, for each y ∈ Y , there is a quota

q(y) ∈ N. An assignment is a collection of pairs (x, y) such that each y ∈ Y appears in

at most q(y) pairs. The previous discussion is the special case where q(y) = 1 for every

y. Stability of an assignment can be defined in exactly the same way as in Definition

21.2. It is then an exercise to check that the Gale-Shapley algorithm can be extended

to find a stable assignment, for any values of the quotas, with the only modification

being that, for y ∈ Y , “her” string has room for up to q(y) elements of X . One natural

application of this generalisation is to assigning students to colleges. You may read the

G-S paper yourself for further details.

Remark 21.7. In the unipartite version of the Stable Matching Problem, one only has

a single set X of even size, 2n say, and each member of X has a ranking of the other

2n − 1 members. Hence, the difference from the bipartite case is that now in principle

anyone can be matched with anyone else. Stable matchings can nevertheless be defined

in exactly the same way as in Definition 21.2 - in other words, a matching is stable if

there is no unmatched pair which can cause instability.

The crucial difference from the bipartite setting is that now there is no guarantee that

a stable matching exists. The simplest example has

(i) X = {1, 2, 3, 4}.

(ii) Each of 1, 2, 3 has 4 at the bottom of their ranking.

(iii) The internal rankings of 1, 2, 3 are “cyclic”. This leaves two “isomorphic” pos-

sibilities, so WLOG: 1 ranks 2 above 3, 2 ranks 3 above 1 and 3 ranks 1 above 2.

(iv) 4’s ranking of 1, 2, 3 is arbitrary.

It is easy to see that, because someone must be matched with 4, there is no stable match-

ing. For example, suppose we match 1 with 4 and 2 with 3. Then the unmatched pair

{1, 3} causes instability. The other possible matchings are treated similarly.

The unipartite version is referred to as the Stable Roommates Problem. It turns out that

there is an efficient algorithm, similar in spirit to the Gale-Shapley algorithm, which

determines whether a stable matching exists and finds one if they do. See

https://en.wikipedia.org/wiki/Stable roommates problem

for further information if you’re interested.


