
4th Lecture: 25/1

In order to prove Theorem 3.8, we need a lemma.

Lemma 4.1. Let p(x) ∈ C[x] be a polynomial and α ∈ C a root of multiplicity

l > 0. Then α is also a root, of multiplicity l − i, of the i:th derivative p(i)(x), for

each 1 ≤ i ≤ l − 1.

PROOF OF LEMMA: That α is a root of multiplicity l means that x − α is a factor

of multiplicity l, in other words that p(x) = (x − α)lq(x), for some polynomial q(x).
It is then easy to see that, if we differentiate i times (use the product rule and induction

on i), (x− α)l−i will still be a factor of p(i)(x), and hence α still be a root of p(i)(x) of

multiplicity l − i, as long as i < l.

PROOF OF THEOREM 3.8: Set p0(x) := xk −
∑k

i=1 cix
k−i and let α be a root of

p0(x) of some multiplicity l > 0. Since (3.7) is a linear recurrence, it suffices to prove

that an = ni · αn solves (3.7), for each 0 ≤ i ≤ l − 1. This is immediately clear for

i = 0, by what we already discussed in Lecture 3, namely: direct insertion into (3.7)

and cancellation of αn−k yields α as a solution of (3.8).

Now suppose l > 1 and define a sequence of polynomials P0(x), P1(x), . . . , Pl−1(x)
recursively as follows:

P0(x) := xn−kp0(x),

Pi(x) := xP ′

i−1(x), for i = 1, . . . , l − 1.

Since ck 6= 0 (as otherwise the degree of the recurrence would be less than k), it follows

that α 6= 0. Hence α is also a root of multiplicity l of P0(x). Hence, by Lemma 4.1, α
is a root of multiplicity l− 1 of P ′

0(x) and hence of P1(x). But, computing directly, we

have

P1(x) = x ·
d

dx

(

xn −

k
∑

i=1

cix
n−i

)

= n · xn −

k
∑

i=1

ci(n− i)xn−i

and hence (since l > 1),

0 = P1(α) = n · αn −
k
∑

i=1

ci(n− i)αn−i.

This just says that an = n · αn satisfies (3.7), as desired.

One can now continue in the same manner and check that, for each 1 ≤ i ≤ l − 1, α
is a root of Pi(x) of multiplicity l − i, that

Pi(x) = nixn −
k
∑

j=1

cj(n− j)ixn−j

and hence, since 0 = Pi(α), that an = ni · αn satisfies (3.7), v.s.v.
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Inhomogeneous linear recurrences (ILRs). We are now concerned with recursions

of the form

an+k =
k
∑

i=1

cian+k−i + bn (4.1)

where c1, c2, . . . , ck are constants as before, and (bn)
∞

n=0 is, a priori, any sequence of

complex numbers. The homogeneous case, studied in Lecture 3, is the case bn = 0 for

all n. We saw that in that case the general solution to (4.1) is a k-dimensional vector

subspace V of l∞. More generally, we have

Proposition 4.2. The general solution to (4.1) is an element of

V + xp = {v + xp : v ∈ V },

where V is the general solution to the homogeneous part (bn := 0 for all n) and xp ∈ l∞

is any solution whatsoever to (4.1).

The proof is simple linear algebra and left to the reader. Note that xp is called a par-

ticular solution to (4.1) and the full solution set V + xp is referred to as a coset of the

subspace V of l∞.

The Proposition reduces the solution of an ILR to that of a corresponding HLR, plus

the finding of any particular solution. Usually it is not possible to give an explicit for-

mula for a particular solution, but there are two cases in which it is so:

Theorem 4.3. (i) Suppose bn = αn for some fixed α ∈ C. If α is a root of multi-

plicity l ≥ 0 of the homogeneous part of (4.1), then there is some constant C such that

bn = C · nl · αn solves (4.1).

(ii) Suppose bn = p(n), for some fixed polynomial p(x) ∈ C[x]. Let l ≥ 0 be the mul-

tiplicity of 1 as a root of the characteristic equation of the homogeneous part of (4.1).

Then there is some polynomial q(x), of the same degree as p(x), such that bn = nl ·q(n)
solves (4.1).

Theorem 4.3 can be proven in a similar manner to Theorem 3.8, but we choose to

omit the details.

Example 4.4. In this example we first derive an ILR (combinatorial problem) before

solving it (algebraic problem).

For every n ≥ 0, let qn be the number of n-letter words in the alphabet A =
{a, b, c, d} which have an odd number of b’s. We can compute the first few values

directly:

q0 = 0: The empty word has an even numbers (zero) of b’s.

q1 = 1: The word must be b.
q2 = 6: One letter must be a b and the other something else (3 choices). Order mat-

ters (2 choices). MP ⇒ 3 · 2 = 6. The allowed words are ab, cb, db, ba, bc, bd.
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I claim that, for every n ≥ 1,

qn = 2 · qn−1 + 4n−1. (4.2)

For an admissable word of length n, consider the following two cases:

Case 1: The word begins with a b. Then the remaining letters form a word of length

n − 1 with an even number of b’s. There are 4n−1 words of length n − 1 in total (by

MP) and qn−1 of them, by definition, have an odd number of b’s. Hence, the number of

admissable words in Case 1 is 4n−1 − qn−1.

Case 2: The word begins with a, c or d. Then, by a similar analysis to Case 1, there

are qn−1 possibilities for the remaining letters. Since there are three choices for the first

letter, by MP there are a total of 3 · qn−1 admissable words in Case 2.

Clearly, Cases 1 and 2 are mutually exclusive and exhaust all options so, by AP, the total

number of admissable words of length n is (4n−1 − qn−1) + 3 · qn−1 = 2 · qn−1 + 4n−1,

which proves (4.2).

So now we are left to solve the ILR

q0 = 0, qn = 2qn−1 + 4n−1 ∀n ≥ 1. (4.3)

Step 1: Find the general solution of the homogeneous part of (4.3), namely of qn =
2qn−1. The characteristic equation is x = 2, so the general solution is

qh, n = C1 · 2
n. (4.4)

Step 2: Find a particular solution of (4.3). We apply Theorem 4.3(i). Here α = 4, which

is not a root (i.e.: a root of multiplicity zero) of the characteristic equation. Hence the

particular solution has the form qp, n = C ·4n. To find C we substitute into (4.3) and get

C · 4n = 2C · 4n−1 + 4n−1 ⇒ C = −1/2.

Step 3: By Proposition 4.2, the general solution to (4.3) is

qn = qh, n + qp, n = C1 · 2
n −

1

2
· 4n.

To find C1 we insert the initial condition:

q0 = 0 = C1 −
1

2
⇒ C1 =

1

2
.

Hence, qn = 1
2
(4n − 2n). Note that qn is “slightly less than half of” 4n, and that the

latter is the total number of words of length n in a 4-letter alphabet. Is this what you

would expect intuitively ?

Example 4.5 (see Demo1). Solve the recurrence

u0 = u1 = 1, un = 6un−1 − 5un−2 + 5n + n+ 1 ∀ n ≥ 2. (4.5)

Step 1: The characteristic equation is x2 = 6x− 5, with roots α1 = 1, α2 = 5. Hence

uh, n = C1 · 1
n + C2 · 5

n = C1 + C2 · 5
n.
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Step 2: By linearity, one can take up, n = up1, n + up2, n, where up1, n is a particular

solution corresponding to bn = 5n and up2, n is a particular solution corresponding to

bn = n+ 1.

By Theorem 4.3(i), since α = 5 is a root of multiplicity one of the characteristic

equation, we should take up1, n = C3 · n · 5n. Substitute:

un = 6un−1−5un−2+5n ⇒ C3 ·n ·5
n = 6C3 ·(n−1) ·5n−1−5C3 ·(n−2) ·5n−2+5n.

If one multiplies out one will find that coefficients of n · 5n cancel exactly. Then com-

paring coefficients of 5n yields

0 = −
6

5
C3 +

10

25
C3 + 1 ⇒ C3 =

5

4
.

By Theorem 4.3(ii), since 1 is a root of multiplicity one of the characteristic equation,

one should take up2, n = n · (C4n+ C5) = C4n
2 + C5n. Substitute:

un = 6un−1 − 5un−2 + (n+ 1) ⇒

C4n
2 + C5n = 6[C4(n− 1)2 + C5(n− 1)]− 5[C4(n− 2)2 + C5(n− 2)] + n+ 1.

Multiply out and compare coefficients of the different powers of n. One will find that

the coefficients of the highest power n2 cancel exactly. In comparing coefficents of n
one will find that C5 cancels exactly and be left with C4 = −1/8. Finally, comparing

constant coefficients yields

0 = (6C4 − 6C5) + (−20C4 + 10C5) + 1
C4=−1/8

⇒ C5 = −11/16.

Step 3: Hence, by Proposition 4.2, the general solution to our recurrence is

un = uh, n + up, n = C1 + C2 · 5
n +

5

4
· n · 5n −

n2

8
−

11n

16
.

We find C1, C2 by inserting the initial conditions:

n = 0 : u0 = 1 = C1 + C2,

n = 1 : u1 = 1 = C1 + 5C2 +
25

4
−

1

8
−

11

16
⇒ C1 + 5C2 = −

71

16
.

Solving, one gets C1 = 151/64, C2 = −87/64. Hence,

un =

(

−
87

64
+

5n

4

)

· 5n −
n2

8
−

11n

16
+

151

64
.


