Second Exercise Session: 31/1

Theme: Pigeonhole Principle, Linear Recursions

Relevant Chapters: Vol. 1: 5.3, Vol.2: 4.2

1. (5.55 in Vol. 1) Prove that if 17 or more pieces are placed on a chessboard, then there must be two which are adjacent, either vertically, horizontally or diagonally.
2. Assuming that "acquaintanceship" is a symmetric relation (I know you if and only if you know me), prove that in any group of 6 people, there must be subgroup of 3 who are either all mutual acquaintances or mutual strangers.
(Hint: Consider the situation from the viewpoint of one of the 6 people.)
3. For each $n \geq 0$, let q_{n} be the number of n-letter words in the alphabet $\{a, b, c\}$ which don't contain any pair of consecutive b 's. Find and solve a recursion for the numbers q_{n}.
4. Consider the recursion

$$
a_{0}=a_{1}=a_{2}=1, \quad a_{n}=3 a_{n-1}-4 a_{n-3} \forall n \geq 3 .
$$

(i) Compute a_{3} and a_{4} directly.
(ii) Determine an exact formula for a_{n}.
5. Consider the recursion

$$
a_{0}=0, a_{1}=1, \quad a_{n}=2 a_{n-1}-a_{n-2} \forall n \geq 2 .
$$

(i) Determine the formula for a_{n} "by staring".
(ii) Verify the formula by solving the recursion in the usual manner.

Solutions

1. Divide the 8×8 chessboard into sixteen 2×2 squares. Since we place 17 pieces, by the Pigeonhole Principle, there must be some square in which we place at least 2 pieces. But these two pieces must then be adjacent.
2. Isolate one of the 6 people, call him P. There are 5 others and, since $5>2 \cdot 2$, by the Extended Pigeonhole Principle, one of the following must occur:

Case 1: P has at least 3 acquaintances.
Case 2: At least 3 others are strangers to P .
First consider Case 1. If any two amongst P's acquaintances are also acquainted, then these two together with P form a group of 3 mutual acquaintances and we're done. The only way to avoid this is if all of P's acquaintances are mutual strangers, but since there are at least 3 of them, we must then have a group of 3 mutual strangers.

Case 2 is handled completely analogously, we just interchange "acquaintance" and "stranger".
3. We have the initial conditions
$q_{0}=1$: the empty word works.
$q_{1}=3$: any of a, b, c is okay.
To obtain a recursion, consider a word of length n satisfying our condition and two cases:

Case 1: The last letter is a or c.
Case 2: The last letter is b.
In Case 1, the first $n-1$ letters must satisfy the same condition as at the outset but no others. Hence there are q_{n-1} possibilities for this part of the word. There are two possible letters in the last position hence, by MP, a total of $2 q_{n-1}$ possible words.

In Case 2, the second to last letter cannot also be b, so it must be a or c. The remaining $n-2$ letters must satisfy the same condition as at the outset, but no others. Hence there are q_{n-2} possibilities for the first $n-2$ letters and two possibilities for the ($n-1$):st letter, so $2 q_{n-2}$ possible words in all.

Finally then, by AP, we have a total of $2 q_{n-1}+2 q_{n-2}$ possible words of length n, which means that

$$
q_{n}=2 q_{n-1}+2 q_{n-2}
$$

The characteristic equation is $\alpha^{2}=2 \alpha+2$, which has the roots $\alpha_{1,2}=1 \pm \sqrt{3}$. Hence the general solution is

$$
q_{n}=C_{1} \cdot(1+\sqrt{3})^{n}+C_{2} \cdot(1-\sqrt{3})^{n} .
$$

Insert the initial conditions:

$$
\begin{array}{r}
n=0: \quad q_{0}=1=C_{1}+C_{2} \\
n=1: \quad q_{1}=3=(1+\sqrt{3}) C_{1}+(1-\sqrt{3}) C_{2} .
\end{array}
$$

Two linear equations in two unknowns, which are easily solved to yield $C_{1}=\frac{\sqrt{3}+2}{2 \sqrt{3}}$, $C_{2}=\frac{\sqrt{3}-2}{2 \sqrt{3}}$. Hence,

$$
q_{n}=\frac{\sqrt{3}+2}{2 \sqrt{3}}(1+\sqrt{3})^{n}+\frac{\sqrt{3}-2}{2 \sqrt{3}}(1-\sqrt{3})^{n} .
$$

4. (i) According to the recursion and with the given initial conditions:

$$
\begin{array}{r}
n=3: \quad a_{3}=3 a_{2}-4 a_{0}=3(1)-4(1)=-1 \\
n=4: \quad a_{4}=3 a_{3}-4 a_{1}=3(-1)-4(1)=-7
\end{array}
$$

(ii) STEP 1: The characteristic equation is $\alpha^{3}=3 \alpha^{2}-4$. One can perhaps see quickly that $\alpha_{1}=-1$ is a root, so $\alpha+1$ is a factor of the polynomial. Standard polynomial division gives

$$
\frac{\alpha^{3}-3 \alpha^{2}+4}{\alpha+1}=\alpha^{2}-4 \alpha+4=(\alpha-2)^{2}
$$

so $\alpha_{2,3}=2$ is a repeated root. Hence, the general solution to the recursion is

$$
a_{n}=C_{1} \cdot(-1)^{n}+C_{2} \cdot 2^{n}+C_{3} \cdot n \cdot 2^{n} .
$$

STEP 2: We insert the initial conditions:

$$
\begin{array}{r}
n=0: \quad a_{0}=1=C_{1}+C_{2} \\
n=1: \quad a_{1}=1=-C_{1}+2 C_{2}+2 C_{3} \\
n=2: \quad a_{2}=1=C_{1}+4 C_{2}+8 C_{3} .
\end{array}
$$

Three linear equations in three unknowns, so apply standard Gauss elimination to get $C_{1}=-1 / 9, C_{2}=8 / 9, C_{3}=-1 / 3$. Hence, the unique solution of the recursion is

$$
a_{n}=-\frac{1}{9} \cdot(-1)^{n}+\left(\frac{8}{9}-\frac{n}{3}\right) \cdot 2^{n} .
$$

5. (i) $a_{n}=n$, which can be verified by

STEP 1: Check the initial conditions: yes, the formula works for $n=0,1$.
STEP 2: Check that the formula satisfies the recursion: yes, since $n=2(n-1)-$ ($n-2$).
Obs! Formally, what you're doing here is proving the formula $a_{n}=n$ by so-called strong induction on n.
(ii) The characteristic equation is $\alpha^{2}=2 \alpha-1$, which has the repeated root $\alpha_{1,2}=1$. Hence the general solution is

$$
q_{n}=C_{1} \cdot 1^{n}+C_{2} \cdot n \cdot 1^{n}=C_{1}+C_{2} \cdot n
$$

Insert the initial conditions:

$$
\begin{array}{r}
n=0: \quad a_{0}=0=C_{1} \\
n=1: \quad a_{1}=1=C_{1}+C_{2} \Rightarrow C_{1}=1 .
\end{array}
$$

Hence, $a_{n}=n$, v.s.v.

