
Second Exercise Session: 31/1

Theme: Pigeonhole Principle, Linear Recursions

Relevant Chapters: Vol. 1: 5.3, Vol.2: 4.2

1. (5.55 in Vol. 1) Prove that if 17 or more pieces are placed on a chessboard, then there

must be two which are adjacent, either vertically, horizontally or diagonally.

2. Assuming that “acquaintanceship” is a symmetric relation (I know you if and only if

you know me), prove that in any group of 6 people, there must be subgroup of 3 who

are either all mutual acquaintances or mutual strangers.

(HINT: Consider the situation from the viewpoint of one of the 6 people.)

3. For each n ≥ 0, let qn be the number of n-letter words in the alphabet {a, b, c} which

don’t contain any pair of consecutive b’s. Find and solve a recursion for the numbers qn.

4. Consider the recursion

a0 = a1 = a2 = 1, an = 3an−1 − 4an−3 ∀n ≥ 3.

(i) Compute a3 and a4 directly.

(ii) Determine an exact formula for an.

5. Consider the recursion

a0 = 0, a1 = 1, an = 2an−1 − an−2 ∀n ≥ 2.

(i) Determine the formula for an “by staring”.

(ii) Verify the formula by solving the recursion in the usual manner.
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Solutions

1. Divide the 8× 8 chessboard into sixteen 2× 2 squares. Since we place 17 pieces,

by the Pigeonhole Principle, there must be some square in which we place at least 2

pieces. But these two pieces must then be adjacent.

2. Isolate one of the 6 people, call him P. There are 5 others and, since 5 > 2 · 2,

by the Extended Pigeonhole Principle, one of the following must occur:

Case 1: P has at least 3 acquaintances.

Case 2: At least 3 others are strangers to P.

First consider Case 1. If any two amongst P’s acquaintances are also acquainted, then

these two together with P form a group of 3 mutual acquaintances and we’re done. The

only way to avoid this is if all of P’s acquaintances are mutual strangers, but since there

are at least 3 of them, we must then have a group of 3 mutual strangers.

Case 2 is handled completely analogously, we just interchange “acquaintance” and

“stranger”.

3. We have the initial conditions

q0 = 1: the empty word works.

q1 = 3: any of a, b, c is okay.

To obtain a recursion, consider a word of length n satisfying our condition and two

cases:

Case 1: The last letter is a or c.
Case 2: The last letter is b.

In Case 1, the first n − 1 letters must satisfy the same condition as at the outset but

no others. Hence there are qn−1 possibilities for this part of the word. There are two

possible letters in the last position hence, by MP, a total of 2qn−1 possible words.

In Case 2, the second to last letter cannot also be b, so it must be a or c. The re-

maining n − 2 letters must satisfy the same condition as at the outset, but no others.

Hence there are qn−2 possibilities for the first n− 2 letters and two possibilities for the

(n− 1):st letter, so 2qn−2 possible words in all.

Finally then, by AP, we have a total of 2qn−1 + 2qn−2 possible words of length n,

which means that

qn = 2qn−1 + 2qn−2.

The characteristic equation is α2 = 2α+ 2, which has the roots α1, 2 = 1±
√
3. Hence

the general solution is

qn = C1 · (1 +
√
3)n + C2 · (1−

√
3)n.

Insert the initial conditions:

n = 0 : q0 = 1 = C1 + C2,

n = 1 : q1 = 3 = (1 +
√
3)C1 + (1−

√
3)C2.
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Two linear equations in two unknowns, which are easily solved to yield C1 =
√

3+2

2
√

3
,

C2 =
√

3−2

2
√

3
. Hence,

qn =

√
3 + 2

2
√
3

(1 +
√
3)n +

√
3− 2

2
√
3

(1−
√
3)n.

4. (i) According to the recursion and with the given initial conditions:

n = 3 : a3 = 3a2 − 4a0 = 3(1)− 4(1) = −1,

n = 4 : a4 = 3a3 − 4a1 = 3(−1)− 4(1) = −7.

(ii) STEP 1: The characteristic equation is α3 = 3α2 − 4. One can perhaps see quickly

that α1 = −1 is a root, so α + 1 is a factor of the polynomial. Standard polynomial

division gives
α3 − 3α2 + 4

α + 1
= α2 − 4α + 4 = (α− 2)2

so α2, 3 = 2 is a repeated root. Hence, the general solution to the recursion is

an = C1 · (−1)n + C2 · 2n + C3 · n · 2n.
STEP 2: We insert the initial conditions:

n = 0 : a0 = 1 = C1 + C2,

n = 1 : a1 = 1 = −C1 + 2C2 + 2C3,

n = 2 : a2 = 1 = C1 + 4C2 + 8C3.

Three linear equations in three unknowns, so apply standard Gauss elimination to get

C1 = −1/9, C2 = 8/9, C3 = −1/3. Hence, the unique solution of the recursion is

an = −1

9
· (−1)n +

(

8

9
− n

3

)

· 2n.

5. (i) an = n, which can be verified by

STEP 1: Check the initial conditions: yes, the formula works for n = 0, 1.

STEP 2: Check that the formula satisfies the recursion: yes, since n = 2(n − 1) −
(n− 2).
OBS! Formally, what you’re doing here is proving the formula an = n by so-called

strong induction on n.

(ii) The characteristic equation is α2 = 2α − 1, which has the repeated root α1, 2 = 1.

Hence the general solution is

qn = C1 · 1n + C2 · n · 1n = C1 + C2 · n.
Insert the initial conditions:

n = 0 : a0 = 0 = C1,

n = 1 : a1 = 1 = C1 + C2 ⇒ C1 = 1.

Hence, an = n, v.s.v.


