
Third Exercise Session: 17/4

Theme: Inhomogenous linear recursions, Generating functions, Non-linear

recursions

Relevant Chapters: Vol. 2: 4.2.2, 6.4, 6.6

1. Redo Example 4.5 in the lecture notes using instead the method of generating func-

tions, i.e.: solve the recursion

u0 = u1 = 1, un = 6un−1 − 5un−2 + 5n + n+ 1 ∀n ≥ 2.

2. (6.6.19 in Vol. 2) Let A(x) and B(x) be the generating functions of the sequences

(an)
∞

n=0 and (bn)
∞

n=0 respectively.

(a) For which sequence is A(x) + B(x) the generating function ?

(b) For which sequence is A(x)B(x) the generating function ?

(c) For which sequence is A(x2) the generating function ?

(d) For which sequence is A′(x) the generating function ?

(e) For which sequence is (A(x)− a0)/x the generating function ?

(f) Let a−1 be some number. For which sequence is xA(x)+a−1 the generating function

?

3. A permutation π1π2 . . . πn of the numbers 1, 2, . . . , n is said to be 1-3-2 avoiding if

there does not exist any triple (i, j, k) such that i < j < k and πi < πj > πk > πi. Let

An be the number of 1-3-2 avoiding permutations of 1, 2, . . . , n.

(a) Compute A1, A2, A3, A4 directly by writing down all possible permutations.

(b) Prove that An = Cn for every n ∈ N, where Cn is the n:the Catalan number.

(HINT: Show that the numbers An satisfy the same recursion as the numbers Cn).

4. Recall that dn denotes the number of derangements of 1, 2, . . . , n, i.e.: the num-

ber of permutations π1π2 . . . πn such that πi 6= i for every i. Prove that, for all n ≥ 2,

dn = (n− 1)(dn−1 + dn−2).
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Solutions

1. Set G(x) =
∑

∞

n=0
unx

n.

Step 1: Express G(x) as a rational function.

We begin as in Example 5.5 and obtain

(1− 6x+ 5x2)G(x) = (u0 + u1x)− 6u1x+
∞
∑

n=2

(un − 6un−1 + 5un−2)x
n

= (1 + x)− 6x+
∞
∑

n=2

(5n + n+ 1)xn

= 1− 5x+
∞
∑

n=2

5nxn +
∞
∑

n=2

(n+ 1)xn. (1)

Each of the two sums needs to be expressed as a rational function, so we take them in

turn. The first is just a geometric series:

∞
∑

n=2

5nxn =
∞
∑

n=2

(5x)n =
(5x)2

1− 5x
=

25x2

1− 5x
.

For the second sum we compute as follows:

∞
∑

n=2

(n+ 1)xn =
∞
∑

n=0

(n+ 1)xn − (1 + 2x)

=
d

dx

(

∞
∑

n=0

xn

)

− (1 + 2x)

=
d

dx

(

1

1− x

)

− (1 + 2x)

=
1

(1− x)2
− (1 + 2x).

Substituting everything into (1) gives

(1− 6x+ 5x2)G(x) = 1− 5x+
25x2

1− 5x
+

1

(1− x)2
− (1 + 2x) ⇒

(1− 5x)(1− x)G(x) =
−7x(1− 5x)(1− x)2 + 25x2(1− x)2 + (1− 5x)

(1− 5x)(1− x)2

⇒ · · · ⇒ G(x) =
60x4 − 127x3 + 74x2 − 12x+ 1

(1− 5x)2(1− x)3
.

Step 2: The partial fraction decomposition looks like

60x4 − 127x3 + 74x2 − 12x+ 1

(1− 5x)2(1− x)3
=

A

1− 5x
+

B

(1− 5x)2
+

C

1− x
+

D

(1− x)2
+

E

(1− x)3
.

After multiplying up by the common denominator and comparing coefficients of each

power of x, we’ll be left with a system of 5 linear equations for the 5 unknowns
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A, B, C, D, E. I used Wolfram Alpha to perform the computation and got

A = −
167

64
, B =

5

4
, C =

187

64
, D = −

5

16
, E = −

1

4
. (2)

Step 3: Use Theorem 5.1 to convert the partial fraction decomposition back into a power

series:

G(x) = A

(

∞
∑

n=0

(5x)n

)

+ B

(

∞
∑

n=0

(n+ 1)(5x)n

)

+C

(

∞
∑

n=0

xn

)

+D

(

∞
∑

n=0

(n+ 1)xn

)

+ E

(

∞
∑

n=0

(n+ 1)(n+ 2)

2
xn

)

.

Comparing coefficients of xn we deduce that

un = A · 5n + B · (n+ 1) · 5n + C +D(n+ 1) + E
(n+ 1)(n+ 2)

2

= ((A+B) +Bn) · 5n +
E

2
n2 +

(

D +
3E

2

)

n+ (C +D + E).

Finally, inserting the values from (2) yields

un =

(

−
87

64
+

5n

4

)

· 5n −
n2

8
−

11n

16
+

151

64
.

2. Let C(x) =
∑

∞

n=0
cnx

n denote the power series of interest in each part of the exer-

cise. We must therefore express the cn in terms of the an and the bn.

(a)

C(x) = A(x) + B(x) =
∞
∑

n=0

anx
n +

∞
∑

n=0

bnx
n =

∞
∑

n=0

(an + bn)x
n,

so cn = an + bn for every n.

(b)

C(x) = A(x)B(x) =

(

∞
∑

n=0

anx
n

)(

∞
∑

n=0

bnx
n

)

=
∞
∑

n=0

xn

(

n
∑

m=0

am an−m

)

,

so cn =
∑n

m=0
aman−m.

(c) A(x2) =
∑

∞

n=0
an(x

2)n =
∑

∞

n=0
anx

2n, so

cn =

{

an/2, if n is even,
0, if n is odd.

(d) A′(x) =
∑

∞

n=1
nanx

n−1 =
∑

∞

n=0
(n+ 1)an+1x

n, so cn = (n+ 1)an+1.

(e)

A(x)− a0
x

=
1

x

∞
∑

n=1

anx
n =

∞
∑

n=1

anx
n−1 =

∞
∑

n=0

an+1x
n,
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so cn = an+1.

(f)

xA(x)− a−1 =
∞
∑

n=0

anx
n+1 − a0−1x

0 =
∞
∑

n=1

an−1x
n − a0−1x

0 =
∞
∑

n=0

an−1x
n,

so cn = an−1.

3. (a) A1 = 1! = 1 and A2 = 2! = 2 since a permutation on fewer than three

numbers cannot contain any pattern involving three numbers. For n = 3, the only

permutation on three numbers which has the 1-3-2 pattern is the permutation 132 itself,

so A3 = 3! − 1 = 5. For n = 4, it turns out that A4 = 14 and the 4! − 14 = 10
permutations with the 1-3-2 pattern are

1243, 1324, 1342, 1423, 1432, 2143, 2413, 2431, 3142, 4132.

(b) Note that also A0 = 1 since the only permutation of the empty set is the empty

permutation, which contains no patterns at all. Since thus A0 = C0 = 1, it suffices to

show that, for every n ≥ 1,

An =
n
∑

m=1

Am−1An−m. (3)

Consider those 1-3-2 avoiding permutations of 1, 2, . . . , n where n is placed in the

m:th position. If any number placed to the left of n were smaller than any number

placed to the right of it, then these two together with n would form a 1-3-2 pattern.

Hence, the m − 1 numbers to the left of n must form a permutation of n − m +
1, . . . , n− 1, which is therefore just a shift of a permutation of 1, 2, . . . , m− 1. This

permutation must itself avoid the 1-3-2 pattern and so there are Am−1 choices for it.

Similarly, the n−m numbers to the right of n must form a 1-3-2 avoiding permutation

of 1, 2, . . . , n−m so there are An−m choices for it.

Finally, we note that the entire permutation of 1, 2, . . . , n will avoid the 1-3-2 pat-

tern if and only if those parts of it on either side of n do so. Hence, given that n is

placed in position m there are, by MP, Am−1An−m choices for the entire permutation.

Since m can run from 1 through to n, summing over m proves (3).

4. There are n − 1 choices for the position of 1 in a derangement of 1, 2, . . . , n and

clearly the number of possible derangements is independent of where we put 1. So

dn = (n − 1)T , where T is the number of derangements where 1 is placed in position

2, say.

Case 1: 2 is placed in position 1. Then it remains to make a derangement of the n−2
numbers 3, 4, . . . , n and so there are dn−2 possibilities.

Case 2: 2 is not placed in position 1. Here the idea is to ”identify” positions 1 and 2
and thus imagine that one is left having to make a derangement of 2, 3, . . . , n. There

are thus dn−1 possibilities in this case.

Thus, by AP, T = dn−2 + dn−1 and so dn = (n− 1)(dn−2 + dn−1), v.s.v.


