Third Exercise Session: 17/4

Theme: Inhomogenous linear recursions, Generating functions, Non-linear
recursions

Relevant Chapters: Vol. 2: 4.2.2, 6.4, 6.6

1. Redo Example 4.5 in the lecture notes using instead the method of generating func-
tions, i.e.: solve the recursion

g =u1 =1, U, =06Up_1—dUp_o+d"+n+1Vn>2.

2. (6.6.19 in Vol. 2) Let A(z) and B(x) be the generating functions of the sequences
(@)%, and (b,,)72, respectively.

(a) For which sequence is A(x) + B(x) the generating function ?
(b) For which sequence is A(z)B(z) the generating function ?

(¢) For which sequence is A(z?) the generating function ?

(d) For which sequence is A’(x) the generating function ?

(e) For which sequence is (A(z) — ag)/x the generating function ?

(f) Let a_; be some number. For which sequence is x A(x)+a_; the generating function
?

3. A permutation 775 . . . 7, of the numbers 1, 2, ..., n is said to be /-3-2 avoiding if

there does not exist any triple (¢, j, k) such that < j < kand m; < m; > m;, > m;. Let

A, be the number of 1-3-2 avoiding permutations of 1, 2, ..., n.

(a) Compute Ay, Ay, A3, A, directly by writing down all possible permutations.

(b) Prove that A,, = C,, for every n € N, where C,, is the n:the Catalan number.
(HINT: Show that the numbers A,, satisfy the same recursion as the numbers C,,).

4. Recall that d,, denotes the number of derangements of 1, 2, ..., n, i.e.: the num-
ber of permutations 775 . . . 7, such that m; # i for every 7. Prove that, for all n > 2,

dp = (1 — 1)(dyy + d_s).



Solutions
1. Set G(z) = >~ u,a”™

Step 1: Express G(z) as a rational function.

We begin as in Example 5.5 and obtain

(1 — 6z + 52*)G(z) = (uo + urx) — 6wy + Z(un — 6uy_1 + Duy_o)z"

n=2

:(1+:c)—6:c—|—2(5"+n—|—1)a:”

n=2
= 1—5x+z5”x"+2(n+1)x”. (1)
n=2 n=2

Each of the two sums needs to be expressed as a rational function, so we take them in
turn. The first is just a geometric series:

= = (5x)? 251
57" =Y (5 .
HZ; . nz;( V=1 5 T 15

For the second sum we compute as follows:

i(n—i—l)x”:i (n+1)z" — (14 2x)

:% (n x”) (1+ 22)

d 1

— (14 2x).

T (l-wp fv)
Substituting everything into (1) gives
2512 1
(1 — 6z +52*)G(z) =1 — 52 + — + =2 —(1422) =
—7z(1 —52)(1 — 2)* + 252%(1 — 2)* + (1 — bz)
(1 —=5x)(1 —x)?
602" — 1272% + 742% — 122 + 1
(1 —52)%(1 —x)3

(1—=5z)(1 —x)G(z) =

== G(x)=

Step 2: The partial fraction decomposition looks like
602* — 12723 + T4a? — 122 + 1 A B C D E
= + + + + .
(1—52)%(1—x)3 1-5z (1-5x)?2 1—2 (1—-2)2 (1—-2)3
After multiplying up by the common denominator and comparing coefficients of each
power of z, we’ll be left with a system of 5 linear equations for the 5 unknowns




A, B, C, D, E.Tused Wolfram Alpha to perform the computation and got

1 1 1
PR AONS RPURE L S o
64 4 64 16 4
Step 3: Use Theorem 5.1 to convert the partial fraction decomposition back into a power
series:

G(z)=A <Z(5x)n> + B (Z(n + 1)(595)")

n=0 n=0

e (i x”) v D (i(n 4 1)9(:") L E (i (n+ 1)2(” +2) x”) .

n=0 n=0

Comparing coefficients of 2™ we deduce that

(n+1)(n+2)
2

E 3E
:((A+B)+Bn)-5"—|—§n2+<D+7>n+(C+D+E).

U, =A-5"+B-(n+1)-5"+C+Dn+1)+E

Finally, inserting the values from (2) yields

_ 87+5n £ n? 1ln 151
Y=\ T T

s 16 T e

2. Let C'(z) = > 7, c,z" denote the power series of interest in each part of the exer-
cise. We must therefore express the ¢, in terms of the a,, and the b,,.

(@)
C(z) = A(z) + Blz) = i 4™ + i ba" = i(an + by)a",
S0 ¢, = ay, + b, for every n. " " "
(b)
et e - (S0 (500) - Eoo (S e
=0 n=0 n=0  \m=0

n
SO Cp = Y o AmGn—m.

(C) A($2) = Z'ZO:O an(xQ)” = ZZO:O a,nxzn, SO

o — § anp if n is even,
" 0, if n is odd.

(d) A'(z) =307 na,a™t =3 ((n+ 1)ay112", 30 ¢, = (n+ 1)any.

(e)
Alz) —a 1 — > >
S WS SRS S
n=1 n=1 n=0



SO ¢y = Qpt1-

()
[o.¢] [o.¢] o
TA(z) —a_y = Zanx”+1 —ag_q12° = Zan_lx" —ag_q12° = Zan_lx”,
n=0 n=1 n=0
SO Cp, = Up1.
3. (@) Ay = 1! = 1 and A, = 2! = 2 since a permutation on fewer than three

numbers cannot contain any pattern involving three numbers. For n = 3, the only
permutation on three numbers which has the 1-3-2 pattern is the permutation 132 itself,
so A3 = 3! — 1 = 5. For n = 4, it turns out that A, = 14 and the 4! — 14 = 10
permutations with the 1-3-2 pattern are

1243, 1324, 1342, 1423, 1432, 2143, 2413, 2431, 3142, 4132.

(b) Note that also Ay = 1 since the only permutation of the empty set is the empty
permutation, which contains no patterns at all. Since thus Aq = Cy = 1, it suffices to
show that, for every n > 1,

An = Z Am—lAn—m- (3)
m=1
Consider those 1-3-2 avoiding permutations of 1, 2, ..., n where n is placed in the

m:th position. If any number placed to the left of n were smaller than any number
placed to the right of it, then these two together with n would form a 1-3-2 pattern.

Hence, the m — 1 numbers to the left of n must form a permutation of n — m +
1, ..., n — 1, which is therefore just a shift of a permutation of 1, 2, ..., m — 1. This
permutation must itself avoid the 1-3-2 pattern and so there are A,,,_; choices for it.

Similarly, the n—m numbers to the right of » must form a 1-3-2 avoiding permutation
of 1, 2, ..., n — m so there are A,,_,, choices for it.

Finally, we note that the entire permutation of 1, 2, ..., n will avoid the 1-3-2 pat-
tern if and only if those parts of it on either side of n do so. Hence, given that n is
placed in position m there are, by MP, A,, 1A, _,, choices for the entire permutation.
Since m can run from 1 through to n, summing over m proves (3).

4. There are n — 1 choices for the position of 1 in a derangement of 1, 2, ..., n and
clearly the number of possible derangements is independent of where we put 1. So
d, = (n — 1)T, where T is the number of derangements where 1 is placed in position
2, say.

Case 1: 2 1s placed in position 1. Then it remains to make a derangement of the n — 2

numbers 3, 4, ..., n and so there are d,,_» possibilities.
Case 2: 2 is not placed in position 1. Here the idea is to “identify” positions 1 and 2
and thus imagine that one is left having to make a derangement of 2, 3, ..., n. There

are thus d,,_; possibilities in this case.
Thus, by AP, T =d,, 5+ d,_;andsod,, = (n — 1)(d,,—2 + d,_1), V.S.V.



