Theme: Inhomogenous linear recursions, Generating functions, Non-linear recursions

Relevant Chapters: Vol. 2: 4.2.2, 6.4, 6.6

1. Redo Example 4.5 in the lecture notes using instead the method of generating functions, i.e.: solve the recursion

$$
u_{0}=u_{1}=1, \quad u_{n}=6 u_{n-1}-5 u_{n-2}+5^{n}+n+1 \forall n \geq 2 .
$$

2. (6.6.19 in Vol. 2) Let $A(x)$ and $B(x)$ be the generating functions of the sequences $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ respectively.
(a) For which sequence is $A(x)+B(x)$ the generating function ?
(b) For which sequence is $A(x) B(x)$ the generating function ?
(c) For which sequence is $A\left(x^{2}\right)$ the generating function?
(d) For which sequence is $A^{\prime}(x)$ the generating function?
(e) For which sequence is $\left(A(x)-a_{0}\right) / x$ the generating function?
(f) Let a_{-1} be some number. For which sequence is $x A(x)+a_{-1}$ the generating function ?
3. A permutation $\pi_{1} \pi_{2} \ldots \pi_{n}$ of the numbers $1,2, \ldots, n$ is said to be 1-3-2 avoiding if there does not exist any triple (i, j, k) such that $i<j<k$ and $\pi_{i}<\pi_{j}>\pi_{k}>\pi_{i}$. Let A_{n} be the number of 1-3-2 avoiding permutations of $1,2, \ldots, n$.
(a) Compute $A_{1}, A_{2}, A_{3}, A_{4}$ directly by writing down all possible permutations.
(b) Prove that $A_{n}=C_{n}$ for every $n \in \mathbb{N}$, where C_{n} is the n :the Catalan number.
(Hint: Show that the numbers A_{n} satisfy the same recursion as the numbers C_{n}).
4. Recall that d_{n} denotes the number of derangements of $1,2, \ldots, n$, i.e.: the number of permutations $\pi_{1} \pi_{2} \ldots \pi_{n}$ such that $\pi_{i} \neq i$ for every i. Prove that, for all $n \geq 2$,

$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right) .
$$

Solutions

1. Set $G(x)=\sum_{n=0}^{\infty} u_{n} x^{n}$.

Step 1: Express $G(x)$ as a rational function.
We begin as in Example 5.5 and obtain

$$
\begin{align*}
\left(1-6 x+5 x^{2}\right) G(x)=\left(u_{0}+u_{1} x\right)- & 6 u_{1} x+\sum_{n=2}^{\infty}\left(u_{n}-6 u_{n-1}+5 u_{n-2}\right) x^{n} \\
& =(1+x)-6 x+\sum_{n=2}^{\infty}\left(5^{n}+n+1\right) x^{n} \\
& =1-5 x+\sum_{n=2}^{\infty} 5^{n} x^{n}+\sum_{n=2}^{\infty}(n+1) x^{n} . \tag{1}
\end{align*}
$$

Each of the two sums needs to be expressed as a rational function, so we take them in turn. The first is just a geometric series:

$$
\sum_{n=2}^{\infty} 5^{n} x^{n}=\sum_{n=2}^{\infty}(5 x)^{n}=\frac{(5 x)^{2}}{1-5 x}=\frac{25 x^{2}}{1-5 x}
$$

For the second sum we compute as follows:

$$
\begin{aligned}
\sum_{n=2}^{\infty}(n+1) x^{n} & =\sum_{n=0}^{\infty}(n+1) x^{n}-(1+2 x) \\
= & \frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right)-(1+2 x) \\
& =\frac{d}{d x}\left(\frac{1}{1-x}\right)-(1+2 x) \\
& =\frac{1}{(1-x)^{2}}-(1+2 x)
\end{aligned}
$$

Substituting everything into (1) gives

$$
\begin{array}{r}
\left(1-6 x+5 x^{2}\right) G(x)=1-5 x+\frac{25 x^{2}}{1-5 x}+\frac{1}{(1-x)^{2}}-(1+2 x) \Rightarrow \\
(1-5 x)(1-x) G(x)= \\
\Rightarrow \cdots \Rightarrow G(x)=\frac{-7 x(1-5 x)(1-x)^{2}+25 x^{2}(1-x)^{2}+(1-5 x)}{(1-5 x)(1-x)^{2}} \\
\Rightarrow \cdots \Rightarrow x^{4}-127 x^{3}+74 x^{2}-12 x+1 \\
(1-5 x)^{2}(1-x)^{3}
\end{array}
$$

Step 2: The partial fraction decomposition looks like

$$
\frac{60 x^{4}-127 x^{3}+74 x^{2}-12 x+1}{(1-5 x)^{2}(1-x)^{3}}=\frac{A}{1-5 x}+\frac{B}{(1-5 x)^{2}}+\frac{C}{1-x}+\frac{D}{(1-x)^{2}}+\frac{E}{(1-x)^{3}} .
$$

After multiplying up by the common denominator and comparing coefficients of each power of x, we'll be left with a system of 5 linear equations for the 5 unknowns
A, B, C, D, E. I used Wolfram Alpha to perform the computation and got

$$
\begin{equation*}
A=-\frac{167}{64}, \quad B=\frac{5}{4}, \quad C=\frac{187}{64}, \quad D=-\frac{5}{16}, \quad E=-\frac{1}{4} \tag{2}
\end{equation*}
$$

Step 3: Use Theorem 5.1 to convert the partial fraction decomposition back into a power series:

$$
\begin{array}{r}
G(x)=A\left(\sum_{n=0}^{\infty}(5 x)^{n}\right)+B\left(\sum_{n=0}^{\infty}(n+1)(5 x)^{n}\right) \\
+C\left(\sum_{n=0}^{\infty} x^{n}\right)+D\left(\sum_{n=0}^{\infty}(n+1) x^{n}\right)+E\left(\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}\right) .
\end{array}
$$

Comparing coefficients of x^{n} we deduce that

$$
\begin{aligned}
u_{n} & =A \cdot 5^{n}+B \cdot(n+1) \cdot 5^{n}+C+D(n+1)+E \frac{(n+1)(n+2)}{2} \\
& =((A+B)+B n) \cdot 5^{n}+\frac{E}{2} n^{2}+\left(D+\frac{3 E}{2}\right) n+(C+D+E)
\end{aligned}
$$

Finally, inserting the values from (2) yields

$$
u_{n}=\left(-\frac{87}{64}+\frac{5 n}{4}\right) \cdot 5^{n}-\frac{n^{2}}{8}-\frac{11 n}{16}+\frac{151}{64}
$$

2. Let $C(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ denote the power series of interest in each part of the exercise. We must therefore express the c_{n} in terms of the a_{n} and the b_{n}.
(a)

$$
C(x)=A(x)+B(x)=\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} b_{n} x^{n}=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}
$$

so $c_{n}=a_{n}+b_{n}$ for every n.
(b)

$$
C(x)=A(x) B(x)=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} x^{n}\left(\sum_{m=0}^{n} a_{m} a_{n-m}\right),
$$

so $c_{n}=\sum_{m=0}^{n} a_{m} a_{n-m}$.
(c) $A\left(x^{2}\right)=\sum_{n=0}^{\infty} a_{n}\left(x^{2}\right)^{n}=\sum_{n=0}^{\infty} a_{n} x^{2 n}$, so

$$
c_{n}= \begin{cases}a_{n / 2}, & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd }\end{cases}
$$

(d) $A^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$, so $c_{n}=(n+1) a_{n+1}$.
(e)

$$
\frac{A(x)-a_{0}}{x}=\frac{1}{x} \sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} a_{n} x^{n-1}=\sum_{n=0}^{\infty} a_{n+1} x^{n}
$$

$\operatorname{so} c_{n}=a_{n+1}$.
(f)

$$
x A(x)-a_{-1}=\sum_{n=0}^{\infty} a_{n} x^{n+1}-a_{0-1} x^{0}=\sum_{n=1}^{\infty} a_{n-1} x^{n}-a_{0-1} x^{0}=\sum_{n=0}^{\infty} a_{n-1} x^{n},
$$

$\operatorname{so} c_{n}=a_{n-1}$.
3. (a) $A_{1}=1!=1$ and $A_{2}=2!=2$ since a permutation on fewer than three numbers cannot contain any pattern involving three numbers. For $n=3$, the only permutation on three numbers which has the 1-3-2 pattern is the permutation 132 itself, so $A_{3}=3!-1=5$. For $n=4$, it turns out that $A_{4}=14$ and the $4!-14=10$ permutations with the 1-3-2 pattern are

$$
1243,1324,1342,1423,1432,2143,2413,2431,3142,4132 .
$$

(b) Note that also $A_{0}=1$ since the only permutation of the empty set is the empty permutation, which contains no patterns at all. Since thus $A_{0}=C_{0}=1$, it suffices to show that, for every $n \geq 1$,

$$
\begin{equation*}
A_{n}=\sum_{m=1}^{n} A_{m-1} A_{n-m} . \tag{3}
\end{equation*}
$$

Consider those 1-3-2 avoiding permutations of $1,2, \ldots, n$ where n is placed in the m :th position. If any number placed to the left of n were smaller than any number placed to the right of it, then these two together with n would form a 1-3-2 pattern.

Hence, the $m-1$ numbers to the left of n must form a permutation of $n-m+$ $1, \ldots, n-1$, which is therefore just a shift of a permutation of $1,2, \ldots, m-1$. This permutation must itself avoid the 1-3-2 pattern and so there are A_{m-1} choices for it.

Similarly, the $n-m$ numbers to the right of n must form a 1-3-2 avoiding permutation of $1,2, \ldots, n-m$ so there are A_{n-m} choices for it.

Finally, we note that the entire permutation of $1,2, \ldots, n$ will avoid the 1-3-2 pattern if and only if those parts of it on either side of n do so. Hence, given that n is placed in position m there are, by MP, $A_{m-1} A_{n-m}$ choices for the entire permutation. Since m can run from 1 through to n, summing over m proves (3).
4. There are $n-1$ choices for the position of 1 in a derangement of $1,2, \ldots, n$ and clearly the number of possible derangements is independent of where we put 1 . So $d_{n}=(n-1) T$, where T is the number of derangements where 1 is placed in position 2, say.

Case 1: 2 is placed in position 1. Then it remains to make a derangement of the $n-2$ numbers $3,4, \ldots, n$ and so there are d_{n-2} possibilities.

Case 2: 2 is not placed in position 1. Here the idea is to "identify" positions 1 and 2 and thus imagine that one is left having to make a derangement of $2,3, \ldots, n$. There are thus d_{n-1} possibilities in this case.

Thus, by AP, $T=d_{n-2}+d_{n-1}$ and so $d_{n}=(n-1)\left(d_{n-2}+d_{n-1}\right)$, v.s.v.

