
Fifth Exercise Session: 27/4

Themes: Number theory, Group theory (optional)

Relevant Chapters: Vol.1: 3; Suppl4.pdf; Vol. 2: 2 (optional)

1. Compute the inverse of 37 in Z
×

103.

2. Determine the general solution of the system

2x ≡ 1 (mod 9), 3x ≡ 2 (mod 10), 4x ≡ 3 (mod 11).

3. For which b ∈ Z does the congruence 36x ≡ b (mod 100) have a solution ? Find the

general solution for b = 68.

4. (i) Explain the “digit sum trick” for testing whether a number is divisible by 9 (resp.

3).

(ii) Determine, with proof, a similar trick for testing divisibility by 11.

1



2

Solutions

1. Note that the inverse exists, since 103 and 37 are both primes and hence we know in

advance that GCD(103, 37) = 1. Euclid forwards:

103 = 2 · 37 + 29,

37 = 1 · 29 + 8,

29 = 3 · 8 + 5,

8 = 1 · 5 + 3,

5 = 1 · 3 + 2,

3 = 1 · 2 + 1.

Then backwards:

1 = 3− 2

= 3− (5− 3)

= 2 · 3− 5

= 2(8− 5)− 5

= 2 · 8− 3 · 5

= 2 · 8− 3(29− 3 · 8)

= 11 · 8− 3 · 29

= 11(37− 29)− 3 · 29

= 11 · 37− 14 · 29

= 11 · 37− 14(103− 2 · 37)

⇒ 1 = (−14) · 103 + 39 · 37.

Reading this modulo 103, we have

1 ≡ 39 · 37 (mod 103)

and hence 37−1 ≡ 39 (mod 103).

2. First some editing:

2x ≡ 1 (mod 9) ⇒ x ≡ 2−1 · 1 ≡ 5 · 1 ≡ 5 (mod 9),

3x ≡ 2 (mod 10) ⇒ x ≡ 3−1 · 2 ≡ 7 · 2 ≡ 4 (mod 10),

4x ≡ 3 (mod 11) ⇒ x ≡ 4−1 · 3 ≡ 3 · 3 ≡ −2 (mod 11).

Thus, by eq. (11.3) in the lecture notes, the general solution is

x ≡ 5 · b1 · 10 · 11 + 4 · b2 · 9 · 11− 2 · b3 · 9 · 10 (mod 9 · 10 · 11), (1)

where

b1 ≡ (10 · 11)−1 ≡ (1 · 2)−1 ≡ 2−1 ≡ 5 (mod 9),

b2 ≡ (9 · 11)−1 ≡ ((−1) · 1)−1 ≡ (−1)−1 ≡ −1 (mod 10),

b3 ≡ (9 · 10)−1 ≡ ((−1) · (−2))−1 ≡ 2−1 ≡ 6 (mod 11).
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We choose b1 = 5, b2 = −1, b3 = 6 and insert into (1) to get

x ≡ 5 · 5 · 10 · 11 + 4 · (−1) · 9 · 11− 2 · 6 · 9 · 10

≡ 2750− 396− 1080 ≡ 1274 ≡ 284 (mod 990).

ANSWER: x ≡ 284 (mod 990).
SANITY CHECK: Check that x = 284 satisfies the original three congruences by direct

calculation:

284− 5 = 279 = 9 · 31, ok

284− 4 = 280 = 10 · 28, ok

284− (−2) = 286 = 11 · 26, ok !

3. Proposition. Let n ∈ Z+ and a, b ∈ Z. Then the congruence

ax ≡ b (mod n)

has a solution if and only if d | b, where d = GCD(a, n). In that case, the general

solution is given by

x ≡
(a

d

)

−1

·

(

b

d

)

(

mod n

d

)

. (2)

PROOF: We have the following equivalences:

∃ x ∈ Z : ax ≡ b (mod n)

⇔ ∃ x ∈ Z : n | ax− b

⇔ ∃ x, y ∈ Z : ax− b = ny

⇔ ∃ x, y ∈ Z : ax− ny = b.

By Theorem 7.12, such x and y exist if and only if GCD(a, n) divides b, v.s.v. Suppos-

ing this is the case, note that

∃ x, y ∈ Z : ax− ny = b ⇔ ∃ x, y ∈ Z :
(a

d

)

x−
(n

d

)

y =
b

d
.

Then running the above sequence of equivalences backwards, this is in turn equivalent

to
(a

d

)

x ≡
b

d

(

mod n

d

)

. (3)

Since now GCD
(

a

d
, n

d

)

= 1,
(

a

d

)

−1 (

mod n

d

)

exists and thus (3) is equivalent to (2),

v.s.v.

Turning to our example, GCD(36, 100) = 4. Hence the congruence has a solution if

and only if b is a multiple of 4, in which case the general solution is

x ≡ 9−1 ·

(

b

4

)

≡ 14 ·
b

4
≡

7b

2
(mod 25).

For b = 68, this becomes x ≡ 238 ≡ 13 (mod 25).
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4. Let N be a k-digit number. This means one would write N = ak−1 . . . a1a0, where

each ai ∈ {0, 1, . . . , 9} and ak−1 6= 0, and that

N =
k−1
∑

i=0

ai · 10
i.

Mod 9: 10 ≡ 1 so 10i ≡ 1i ≡ 1 for every i. Hence N ≡
∑

i
ai (mod 9).

Mod 11: 10 ≡ −1 so 10i ≡ (−1)i for every i. Hence N ≡
∑

i
(−1)iai (mod 11).

In words, we have shown that

Every decimal number is congruent to its own digit sum modulo 9

and

Every decimal number is congruent to its own alternating digit sum modulo 11.


