Fifth Exercise Session: 27/4
Themes: Number theory, Group theory (optional)

## Relevant Chapters: Vol.1: 3; Suppl4.pdf; Vol. 2: 2 (optional)

1. Compute the inverse of 37 in $\mathbb{Z}_{103}^{\times}$.
2. Determine the general solution of the system

$$
2 x \equiv 1(\bmod 9), \quad 3 x \equiv 2(\bmod 10), \quad 4 x \equiv 3(\bmod 11) .
$$

3. For which $b \in \mathbb{Z}$ does the congruence $36 x \equiv b(\bmod 100)$ have a solution? Find the general solution for $b=68$.
4. (i) Explain the "digit sum trick" for testing whether a number is divisible by 9 (resp. 3).
(ii) Determine, with proof, a similar trick for testing divisibility by 11 .

## Solutions

1. Note that the inverse exists, since 103 and 37 are both primes and hence we know in advance that $\operatorname{GCD}(103,37)=1$. Euclid forwards:

$$
\begin{array}{r}
103=2 \cdot 37+29, \\
37=1 \cdot 29+8, \\
29=3 \cdot 8+5, \\
8=1 \cdot 5+3, \\
5=1 \cdot 3+2, \\
3=1 \cdot 2+1 .
\end{array}
$$

Then backwards:

$$
\begin{array}{r}
1=3-2 \\
=3-(5-3) \\
=2 \cdot 3-5 \\
=2(8-5)-5 \\
=2 \cdot 8-3 \cdot 5 \\
=2 \cdot 8-3(29-3 \cdot 8) \\
=11 \cdot 8-3 \cdot 29 \\
=11(37-29)-3 \cdot 29 \\
=11 \cdot 37-14 \cdot 29 \\
=11 \cdot 37-14(103-2 \cdot 37) \\
\Rightarrow \quad 1=(-14) \cdot 103+39 \cdot 37 .
\end{array}
$$

Reading this modulo 103 , we have

$$
1 \equiv 39 \cdot 37(\bmod 103)
$$

and hence $37^{-1} \equiv 39(\bmod 103)$.
2. First some editing:

$$
\begin{array}{r}
2 x \equiv 1(\bmod 9) \Rightarrow x \equiv 2^{-1} \cdot 1 \equiv 5 \cdot 1 \equiv 5(\bmod 9), \\
3 x \equiv 2(\bmod 10) \Rightarrow x \equiv 3^{-1} \cdot 2 \equiv 7 \cdot 2 \equiv 4(\bmod 10) \\
4 x \equiv 3(\bmod 11) \Rightarrow x \equiv 4^{-1} \cdot 3 \equiv 3 \cdot 3 \equiv-2(\bmod 11)
\end{array}
$$

Thus, by eq. (11.3) in the lecture notes, the general solution is

$$
\begin{equation*}
x \equiv 5 \cdot b_{1} \cdot 10 \cdot 11+4 \cdot b_{2} \cdot 9 \cdot 11-2 \cdot b_{3} \cdot 9 \cdot 10(\bmod 9 \cdot 10 \cdot 11), \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{r}
b_{1} \equiv(10 \cdot 11)^{-1} \equiv(1 \cdot 2)^{-1} \equiv 2^{-1} \equiv 5(\bmod 9) \\
b_{2} \equiv(9 \cdot 11)^{-1} \equiv((-1) \cdot 1)^{-1} \equiv(-1)^{-1} \equiv-1(\bmod 10) \\
b_{3} \equiv(9 \cdot 10)^{-1} \equiv((-1) \cdot(-2))^{-1} \equiv 2^{-1} \equiv 6(\bmod 11) .
\end{array}
$$

We choose $b_{1}=5, b_{2}=-1, b_{3}=6$ and insert into (1) to get

$$
\begin{aligned}
& x \equiv 5 \cdot 5 \cdot 10 \cdot 11+4 \cdot(-1) \cdot 9 \cdot 11-2 \cdot 6 \cdot 9 \cdot 10 \\
& \equiv 2750-396-1080 \equiv 1274 \equiv 284(\bmod 990)
\end{aligned}
$$

ANSWER: $x \equiv 284(\bmod 990)$.
Sanity Check: Check that $x=284$ satisfies the original three congruences by direct calculation:

$$
\begin{aligned}
& 284-5=279=9 \cdot 31, \text { ok } \\
& 284-4=280=10 \cdot 28, \text { ok } \\
& 284-(-2)=286=11 \cdot 26, \text { ok ! }
\end{aligned}
$$

3. Proposition. Let $n \in \mathbb{Z}_{+}$and $a, b \in \mathbb{Z}$. Then the congruence

$$
a x \equiv b(\bmod n)
$$

has a solution if and only if $d \mid b$, where $d=\operatorname{GCD}(a, n)$. In that case, the general solution is given by

$$
\begin{equation*}
x \equiv\left(\frac{a}{d}\right)^{-1} \cdot\left(\frac{b}{d}\right)\left(\bmod \frac{n}{d}\right) . \tag{2}
\end{equation*}
$$

Proof: We have the following equivalences:

$$
\begin{array}{r}
\exists x \in \mathbb{Z}: a x \equiv b(\bmod n) \\
\Leftrightarrow \exists x \in \mathbb{Z}: n \mid a x-b \\
\Leftrightarrow \exists x, y \in \mathbb{Z}: a x-b=n y \\
\Leftrightarrow \exists x, y \in \mathbb{Z}: a x-n y=b .
\end{array}
$$

By Theorem 7.12, such $x$ and $y$ exist if and only if $\operatorname{GCD}(a, n)$ divides $b$, v.s.v. Supposing this is the case, note that

$$
\exists x, y \in \mathbb{Z}: a x-n y=b \Leftrightarrow \exists x, y \in \mathbb{Z}:\left(\frac{a}{d}\right) x-\left(\frac{n}{d}\right) y=\frac{b}{d}
$$

Then running the above sequence of equivalences backwards, this is in turn equivalent to

$$
\begin{equation*}
\left(\frac{a}{d}\right) x \equiv \frac{b}{d}\left(\bmod \frac{n}{d}\right) \tag{3}
\end{equation*}
$$

Since now $\operatorname{GCD}\left(\frac{a}{d}, \frac{n}{d}\right)=1,\left(\frac{a}{d}\right)^{-1}\left(\bmod \frac{n}{d}\right)$ exists and thus (3) is equivalent to (2), v.s.v.

Turning to our example, $\operatorname{GCD}(36,100)=4$. Hence the congruence has a solution if and only if $b$ is a multiple of 4 , in which case the general solution is

$$
x \equiv 9^{-1} \cdot\left(\frac{b}{4}\right) \equiv 14 \cdot \frac{b}{4} \equiv \frac{7 b}{2}(\bmod 25) .
$$

For $b=68$, this becomes $x \equiv 238 \equiv 13(\bmod 25)$.
4. Let $N$ be a $k$-digit number. This means one would write $N=a_{k-1} \ldots a_{1} a_{0}$, where each $a_{i} \in\{0,1, \ldots, 9\}$ and $a_{k-1} \neq 0$, and that

$$
N=\sum_{i=0}^{k-1} a_{i} \cdot 10^{i}
$$

$\operatorname{Mod} 9: 10 \equiv 1$ so $10^{i} \equiv 1^{i} \equiv 1$ for every $i$. Hence $N \equiv \sum_{i} a_{i}(\bmod 9)$.
Mod $11: 10 \equiv-1$ so $10^{i} \equiv(-1)^{i}$ for every $i$. Hence $N \equiv \sum_{i}(-1)^{i} a_{i}(\bmod 11)$.
In words, we have shown that
Every decimal number is congruent to its own digit sum modulo 9
and
Every decimal number is congruent to its own alternating digit sum modulo 11.

