"Direct" proof of Theorem 11.7 (Euler's Theorem)

The proof will be accomplished in three steps. All congruences are modulo n.
STEP 1: Define a relation \mathcal{R} on \mathbb{Z}_{n}^{\times}as follows:

$$
x \mathcal{R} y \Leftrightarrow \exists i \in \mathbb{Z}: x \equiv a^{i} y
$$

I claim that \mathcal{R} is an equivalence relation.
Reflexivity: $x \mathcal{R} x$ for any x since $x \equiv a^{0} x$.
Symmetry: $x \equiv a^{i} y \Rightarrow y \equiv a^{-i} x$. Note that $a^{-i}(\bmod n)$ makes sense, since a is invertible $\bmod n$.
Transitivity: If $x \equiv a^{i} y$ and $y \equiv a^{j} z$, then because of associativity, $x \equiv a^{i}\left(a^{j} z\right) \equiv$ $\left(a^{i} a^{j}\right) z \equiv a^{i+j} z$.

STEP 2: Since \mathcal{R} is an equivalence relation, it partitions \mathbb{Z}_{n}^{\times}into equivalence classes. Let H denote the class containing the element a itself. By definition of \mathcal{R}, H consists of all integer powers of $a(\bmod n)$. Note that there must be only finitely many of these, up to repititions, since \mathbb{Z}_{n}^{\times}is a finite set, of size $\phi(n)$. Hence, there must exist positive integers $i<j$ such that $a^{j} \equiv a^{i}$. Multiplying both sides by $a^{-i}(\bmod n)$, it follows that $a^{j-i} \equiv 1$. Thus, there is some positive integer k such that $a^{k} \equiv 1$. I claim that

$$
|H|=\min \left\{k \in \mathbb{N}: a^{k} \equiv 1\right\}
$$

Let l denote the smallest positive integer such that $a^{l} \equiv 1$. If the powers $a=a^{1}, a^{2}, \ldots, a^{l} \equiv$ 1 were not all distinct $\bmod n$, then there would be some $1 \leq i<j \leq l$ such that $a^{i} \equiv a^{j}$ and, arguing as above, it would follow that $a^{j-i} \equiv 1$. But $j-i$ is a positive integer strictly less than l, which contradicts the definition of l. Hence the powers $a^{1}, a^{2}, \ldots, a^{l}$ are all distinct modulo n, which proves that $|H| \geq l$.

On the other hand, let $t \in \mathbb{N}$ be any number greater than l. We can write $t=q l+r$, where $q \in \mathbb{N}$ and $0 \leq r<l$. Then $a^{t}=a^{q l+r}=\left(a^{l}\right)^{q} \cdot a^{r} \equiv 1^{q} \cdot a^{r} \equiv a^{r}$. So every power a^{t} is congruent to one of $1=a^{0}=a^{l}, a^{1}, a^{2}, \ldots, a^{l-1}$, modulo n, which proves that $|H| \leq l$. Thus $|H|=l$, v.s.v.

Step 3: Suppose we can show that every equivalence class of \mathcal{R} has the same size. Then the size of the whole set \mathbb{Z}_{n}^{\times}must be a multiple of the size of any single class, that is a multiple of $|H|$. In other words, l must divide $\phi(n)$, say $\phi(n)=q \cdot l$. But then $a^{\phi(n)}=a^{q l}=\left(a^{l}\right)^{q} \equiv 1^{q} \equiv 1$, v.s.v.

To show that every class has the same size, we just have to note that, by the definition of \mathcal{R}, for any $x \in \mathbb{Z}_{n}^{\times}$, the map

$$
a^{i} \mapsto a^{i} x(\bmod n), i=1,2, \ldots, l,
$$

establishes a 1-1 correspondence between the elements of the class H and the class containing x.

