
Sixth Exercise Session: 4/5

Themes: Number theory, Group theory (optional)

Relevant Chapters: Vol.2: 2 (optional), 3.2; Suppl4.pdf

1. Compute 52022 (mod 23)
(i) using Fermat
(ii) by repeated squaring.

2. Determine all the primitive roots modulo 23.

3. Compute 19971997 (mod 132) and 19941994 (mod 132).

4. (Övning 3.34 i Vol. 2) Du har uppsnappat det krypterade budskapet 444, från en
person vars offentliga nyckel är e = 797 och n = 1961. Du har också lyckats spionera
fram att q = 53. Dekryptera budskapet !

5. Prove Tom Hanks’ Volleyball’s Theorem (a.k.a. Wilson’s Theorem):

If p is a prime, then (p− 1)! ≡ −1 (mod p).
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Solutions

1. (i) By Fermat’s Theorem (23 is prime and 5 isn’t a multiple of 23), 522 ≡ 1 (mod 23).
Now 2022 = 92 · 22− 2, thus

52022 ≡ (522)92 · 5−2 ≡ 192 · (52)−1 ≡ 25−1 ≡ 2−1 ≡ 12 (mod 23).

(ii) Step 1: Write the power in base 2:

2022 = 2 · 1011 + 0,

1011 = 2 · 505 + 1,

505 = 2 · 252 + 1,

252 = 2 · 126 + 0,

126 = 2 · 63 + 0,

63 = 2 · 31 + 1,

31 = 2 · 15 + 1,

15 = 2 · 7 + 1,

7 = 2 · 3 + 1,

3 = 2 · 1 + 1,

1 = 2 · 0 + 1.

The sequence of remainders, read backwards, gives the base-2 representation of the
number:

(2022)2 = 11111100110.

In other words,

2022 = 210 + 29 + 28 + 27 + 26 + 25 + 22 + 21. (1)

Step 2: Repeated squaring. Set x0 = 52
0

≡ 51 ≡ 5 (mod 23) and compute recursively

xi ≡ x2
i−1 ≡ 52

i

(mod 23), up to i = 10.

Just do it:

x1 ≡ 52 ≡ 25 ≡ 2, x2 ≡ 22 ≡ 4,

x3 ≡ 42 ≡ 16 ≡ −7, x4 ≡ (−7)2 ≡ 49 ≡ 3,

x5 ≡ 32 ≡ 9, x6 ≡ 92 ≡ 81 ≡ 12,

x7 ≡ 122 ≡ 144 ≡ 6, x8 ≡ 62 ≡ 36 ≡ −10,

x9 ≡ (−10)2 ≡ 100 ≡ 8, x10 ≡ 82 ≡ 64 ≡ −5.

Step 3: From (1) we have that

52022 = 52
10+29+28+27+26+25+22+21 = 52

10

·52
9

·52
8

·52
7

·52
6

·52
5

·52
2

·52
1

≡ x10 x9 x8 x7 x6 x5 x2 x1 (mod 23).
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We multiply (mod 23), two at a time, to keep all numbers below 232. Thus,

x10 · x9 ≡ −5 · 8 ≡ −40 ≡ 6,

6 · x8 ≡ 6 · (−10) ≡ −60 ≡ 9,

9 · x7 ≡ 9 · 6 ≡ 54 ≡ 8,

8 · x6 ≡ 8 · 12 ≡ 96 ≡ 4,

4 · x5 ≡ 4 · 9 ≡ 36 ≡ 13,

13 · x2 ≡ 13 · 4 ≡ 52 ≡ 6,

6 · x1 ≡ 6 · 2 ≡ 12.

Thus 52022 ≡ 12 (mod 23), v.s.v.

2. By the proof of Euler’s theorem, the order of any element a ∈ Z
×

n must be a di-
visor of φ(n). So a will be a primitive root mod n if and only if ak 6≡ 1 (mod n)
for every proper divisor k of φ(n). This simplifies computations as we search for a
primitive root.

In our example, n = 23, φ(n) = 22 = 2 · 11, so a ∈ {2, 3, . . . , 22} will be a primi-
tive root (mod 23) if and only if neither a2 nor a11 is congruent to 1 (mod 23). Now we
just search.

Test a = 2: 22 = 4 6≡ 1, o.k. But 211 = (25)2 · 21 ≡ 92 · 2 ≡ 12 · 2 ≡ 1, helvete
!

Test a = 3: 32 = 9 6≡ 1, o.k. But 311 = (33)3 · 32 ≡ 43 · 9 ≡ (−5) · 9 ≡ −45 ≡ 1, duh !

No point testing a = 4 since it is a perfect square. If b ≡ a2 then bφ(n)/2 = aφ(n) ≡ 1,
so b cannot be a primitive root.

Test a = 5: Note that 52 ≡ 2, in other words 5 is a square root of 2 (mod 23). This is
promising, but we still have to check that 511 ≡ −1 rather than +1. Thus:

511 = (52)5 · 51 ≡ 25 · 5 ≡ 9 · 5 = 45 ≡ −1, yay!

So 5 is a primitive root (mod 23).

Having found one primitive root, we don’t need to keep testing in order to find all of
them. Instead we can use the following observation (essentially the same observation
as in Remark 11.13 in the Lecture Notes):

Suppose a is a primitive root mod n. Then ai (mod n) is also a primitive root if and

only if GCD(i, φ(n)) = 1.

Hence all the primitive roots (mod 23) are given, mod 23, by

51, 53, 55, 57, 59, 513, 515, 517, 519, 521.
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Moreover, since 522 ≡ 1, the last five of the above are the inverses of the first five (mod
23), in reverse order. For the first five,we just need to compute:

51 ≡ 5, 53 = 52 · 5 ≡ 2 · 5 ≡ 10,

55 = 53 · 52 ≡ 10 · 2 ≡ 20, 57 = 55 · 52 ≡ 20 · 2 ≡ 17,

59 = 57 · 52 ≡ 17 · 2 ≡ 11.

We could keep going, but for the remaining five let’s take inverses of these for the fun
of it:

513 ≡ (59)−1 ≡ 11−1 ≡ −2 ≡ 21,

515 ≡ (57)−1 ≡ 17−1 ≡ (−6)−1 ≡ −4 ≡ 19,

517 ≡ (55)−1 ≡ 20−1 ≡ (−3)−1 ≡ −8 ≡ 15,

519 ≡ (53)−1 ≡ 10−1 ≡ 7,

521 ≡ 5−1 ≡ 14.

So the complete list of primitive roots (mod 23) is: 5, 7, 10, 11, 14, 15, 17, 19, 20, 21.

3. (i) 132 = 22 ·3 ·11. It’s easy to see that 1997 is not divisible by any of 2, 3, 11 (check
last digit for 2, digit-sum for 3 and alternating digit-sum for 11) and hence Euler’s The-
orem applies. φ(132) = φ(22) ·φ(3) ·φ(11) = (22−21)(3−1)(11−1) = 2 ·2 ·10 = 40.
Noting that 1997 = 40 · 50− 3 and 1997 = 15 · 132 + 17 we therefore have

19971997 ≡ 171997 = (1740)50 · 17−3 ≡ 150 · (17−1)3 ≡ (17−1)3 (mod 132).

We compute the inverse via Euclid:

132 = 7 · 17 + 13,

17 = 1 · 13 + 4,

13 = 3 · 4 + 1

⇒ 1 = 13− 3 · 4

= 13− 3(17− 13)

= 4 · 13− 3 · 17

= 4(132− 7 · 17)− 3 · 17

⇒ 1 = 4 · 132− 31 · 17 ⇒ 17−1 ≡ −31 (mod 132).

Thus,

(17−1)3 ≡ (−31)3 ≡ −312 · 31 ≡ −961 · 31 ≡ −37 · 31 ≡ −1147 ≡ −91 ≡ 41 (mod 132).

(ii) Clearly, 1994 is divisible by 2, but not by 4 (it is 2000 − 6) and not by either 3
(check digit-sum) or 11 (check alternating digit-sum). Thus GCD(1994, 132) = 2 > 1,
so we can’t use Euler directly. Set x := 19941994 (mod 132). The trick is to consider x
separately modulo a and b, where

- a · b = 132,
- a consists of the prime powers in the prime factorisation of 132 which also appear

in the prime factorisation of the GCD
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- b consists of the remaining prime powers in the factorisation of 132.

Hence, for our example, we take a = 4, b = 33 and consider x (mod 4) and x (mod 33).

Mod 4: 19941994 ≡ 21994 ≡ 0. So x ≡ 0 (mod 4).

Mod 33: This time GCD(1994, 33) = 1 so Euler applies. φ(33) = (3−1)(11−1) = 20
and

19941994 ≡ 141994 = (1420)100 · 14−6 ≡ 1100 · (146)−1 ≡ ((142)3)−1 ≡ ((−2)3)−1 ≡ (−8)−1 ≡ 4 (mod 33).

Summarising, we have

x ≡ 0 (mod 4), x ≡ 4 (mod 33).

Theorem 11.1 says that there is a unique such x modulo 4 · 33 = 132. We could use eq.
(11.3) to find x, but here it’s immediately obvious that x = 4 works.

Thus 19941994 ≡ 4 (mod 132).

4. Step 1: Since n = pq, we first compute p = n/q = 1961/53 = 37.
Step 2: Compute φ(n) = (p− 1)(q − 1) = 36 · 52 = 1872.
Step 3: Compute d ≡ e−1 (mod φ(n)) ≡ 797−1 (mod 1872). The numbers are too
large for guessing so we apply Euclid. Forwards:

1872 = 2 · 797 + 278,

797 = 2 · 278 + 241,

278 = 1 · 241 + 37,

241 = 6 · 37 + 19,

37 = 1 · 19 + 18,

19 = 1 · 18 + 1.

Note that this confirms that GCD(e, φ(n)) = 1, which is a requirement for an encryp-
tion key. Now backwards:

1 = 19− 18

= 19− (37− 19)

= 2 · 19− 37

= 2(241− 6 · 37)− 37

= 2 · 241− 13 · 37

= 2 · 241− 13(278− 241)

= 15 · 241− 13 · 278

= 15(797− 2 · 278)− 13 · 278

= 15 · 797− 43 · 278

= 15 · 797− 43(1872− 2 · 797)

⇒ 1 = 101 · 797− 43 · 1872,
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which implies that d = 101.

Step 4: The decryption formula is

M ≡ MdB
e (mod nB) ≡ 444101 (mod 1961).

I put this into Wolfram Alpha (which, by the way, just runs the repeated squaring
algorithm) and got M = 777.

5. Since p is a prime, each of the numbers in the set {1, 2, . . . , p − 1} has an in-
verse (mod p) in the same set. The idea is to pair off numbers with their inverses (mod
p) in the product (p − 1)! such that each pair just gives 1 (mod p). This will prove the
result if we can show that the only numbers which are paired off with themselves, i.e.:
which are their own inverses (mod p), are 1 and p− 1, because then the whole product
(mod p) will reduce to a bunch of 1:s and p− 1, which becomes just −1 (mod p). So it
remains to prove the following:

Proposition. Let p be a prime and a an integer not divisible by p. If a is its own

inverse (mod p), then a ≡ ±1 (mod p).

PROOF: a being its own inverse means that a · a = a2 ≡ 1 (mod p). This means
that p divides a2 − 1. But a2 − 1 = (a− 1)(a+1) and, since p is a prime, if p divides a
product of two numbers, then it must divide one of them (Key Lemma 7.5 in the Lecture
Notes). Thus either

p | a− 1 ⇒ a ≡ 1 (mod p), or

p | a+ 1 ⇒ a ≡ −1 (mod p), v.s.v.


