Figure D7.2:

Figure 17.84

. 10

- Figure 17.84

 5. Consider the graphs in parts (d) and (e) of Fig. LL.84; is it possible to temove one vertex from each of these graphs so that each of the resulting subgraphs has a Hamilton cycle?
- 6. If it 23; how many different Hamilton cycles are there in . tha wheel graph W. ? (The graph W. was doffned in Exercise 14 of Section 11.1.)
- 7. a) For $n \ge 3$, how many different Hamilton cycles are there in the complete graph Ku?
- b) How many edge-disjoint Hamilton cycles are there in
- (217).
 c) Ningteon students in a nursory school play a game each day where they hold hands to form a circle. For how many days can they do this with no student holding hands with the sante playmate twice?
- 8. a) For $n \in \mathbb{Z}^+$, $n \ge 2$, show that the number of diathet . Hamilton cycles in the graph $K_{n,n}$ is (1/2)(n-1)! n!
- b) How many different Hamilton paths are there for Kann (i) ≥ 17°
- 9. Let G = (V, E) be a loop-free undirected graph, Prove that If Goontains no cycle of odd length, then O is bipartite.
- (0,0) Let G = (V, E) be a connected bipartite undirected graph with V partitioned as VI U V2. Prove that If [V1] # 1. Val, then G cannot have a Hamilton cycle.
 - b) Prove that if the graph O in part (a) has a Hamilton path, : then $|V_1| - |V_2| = \pm 1$.
- o) Give an example of a connected bipartite undirected graph O = (V, E), where V is partitioned as $V_1 \cup V_2$ and |VI = |V2| - 1, but G has no Hamilton path.

- 11. a) Determine all nonisomorphic tournaments with three
 - b) Find all of the nonisomorphic tournaments with four vertices. List the in degree and the out degree for each vertex, in each of these tournaments.
- 12. Prove that for $n \ge 2$, the hypercube Q_n has a Hamilton cycle.
- 13. Let T=(V,E) be a tournament will $v\in V$ of maximum out degree. If $w\in V$ and $v\neq v$, prove that either $(v,w)\in E$ or there is a vortex y in V where $y\neq v$, w, and (v,y), $(y,w)\in E$. (Such a vertex v is called a king for the tournament.)
- 14. Find a counterexample to the converse of Theorem 11.8.
- 15. Give an example of a loop-free connected undirected multigraph G = (V, E) such that |V| = n and $\deg(x) + \deg(y) \ge$ n-1 for all $x, y \in V$, but G has no Hamilton path.
- 16. Provo Corollaries 11,4 and 11,5,
- 17. Olyo an example to show that the converse of Carollary 11.5 need not be true;.
- 18. Holen and Dominio invite 10 fitends to dinner, In this group of 12 people everyone knows at least 6 others. Prove that the 12 can be sented around a circular table in such a way that each person is acqualated with the person sitting on either side.
- 19. Let G=(V,E) be a loop-free undirected graph that is 6-regular. Prove that if |V|=11, then G contains a Hamilton
- 20. Let G = (V, R) be a loop-free undirected n-regular graph with $|V| \ge 2n + 2$. Prove that \overline{G} (the complement of G) has a Hamilton cycle.