
Eighth Exercise Session: 17/5

Theme: Graph theory

Relevant Chapters: Vol.1: 6; Vol. 2: 7.1, 7.2, 7.4, 8.2

1. Graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there is a

bijection φ : V1 → V2 such that {v1, w1} ∈ E1 ⇔ {φ(v1), φ(w1)} ∈ E2.

Determine which pairs of graphs in Figure D8.1 are isomorphic. Motivate your an-

swers !

2. For the graph G in Figure D8.2,

(i) Give at least four different minimally non-3-colorable subgraphs of G, i.e.: sub-

graphs H s.t. χ(H) > 3 butr χ(H ′) ≤ 3 for every proper subgraph of H .

(ii) Determine χ(G).
(iii) Give an ordering of the vertices for which the greedy algorithm does not produce

an optimal coloring.

3. Consider the weighted, undirected graph in Figure D8.3.

(i) Apply Prim’s algorithm to find a MST in G, starting from the vertex s. Indicate

clearly which edge you choose at each step and the total weight of the final tree.

(ii) Apply instead Kruskal’s algorithm to find a MST. Again, indicate clearly which

edge you choose at each step and the total weight of the final tree.

(iii) How many different MSTs are there in G ?

(iv) Apply Dijkstra’s algorithm to find a shortest path from s to t. Indicate clearly

which edge is chosen and which label is made permanent at each step, along with the

final path and its total length. (OBS! Since G is undirected, you may go in either direc-

tion along any edge.)

4. (i) Prove that if G is a plane graph with at least three vertices then e ≤ 3v − 6.

(ii) Deduce that χ(G) ≤ 6 for any plane graph G.
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Solutions

1. The first pair are isomorphic, and there are two possible isomorphisms, see Figure

D8.1(S). The second pair are not - for example, since the graph on the left contains

cycles of length 3 whereas that on the right does not.

2. (i) Three such configurations are formed by the induced subgraphs on {A, B, D, E},

{E, F, G, I} and {C, E, H, I}, each of which is a K4. A fourth configuration is the

wheel graph W5 centered at E, with spokes pointing to A, B, G, I, C.

(ii) χ(G) = 4. One way to see this is that G is planar - see Figure D8.2(S) for a

plane redrawing of G. An example of an explicit 4-coloring χ : V (G) → {1, 2, 3, 4}
is given by

χ(A) = χ(G) = χ(H) = 1, χ(B) = χ(C) = χ(F ) = 2, χ(I) = 3, χ(E) = 4.

(iii) If we order the vertices in alphabetical order then the colors assigned by the greedy

algorithm will be, in order, 1, 2, 2, 3, 4, 1, 3, 1, 5.

3. (i) See table.

Step Edge chosen Weight

1 {s, a} 2
2 {s, d} 3
3 {d, c} 1
4 {c, f} 3
5 {f, g} 1
6 {g, j} 2
7 {j, i} 3
8 {i, l} 2
9 {l, t} 3
10 {d, e} 3
11 {b, e} 2
12 {e, h} 3
13 {t, m} 4
14 {k, m} 1

Total weight 33

(ii) See table.

(iii) Observe that we get the same tree in parts (i) and (ii) and that this tree contains

every edge in G of weight 1, 2 or 3, plus a single edge of weight 4. Hence, any MST

must have the same property. But once all edges of weight at most 3 are present, then

we can’t include {a, c} or {d, g}, because either would create a cycle. So the only

choice left for a weight-4 edge is {t, m}. Hence the MST is unique.
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Step Edge chosen Weight

1 {c, d} 1
2 {f, g} 1
3 {k, m} 1
4 {s, a} 2
5 {b, e} 2
6 {g, j} 2
7 {i, l} 2
8 {s, d} 3
9 {c, f} 3
10 {d, e} 3
11 {e, h} 3
12 {i, j} 3
13 {l, t} 3
14 {t, m} 4

Total weight 33

(iv)

Step Edge added Label added

1 {s, a} l(a) := 2
2 {s, d} l(d) := 3
3 {d, c} l(c) := 4
4 {s, b} l(b) := 5
5 {d, e} l(e) := 6
6 {c, f} l(f) := 7
7 {d, g} l(g) := 7
8 {g, j} l(j) := 9
9 {e, h} l(h) := 9
10 {j, i} l(i) := 12
11 {i, l} l(l) := 14
12 {h, k} l(k) := 14
13 {j, t} l(t) := 15

Note that steps 6-7, 8-9 and 11-12 are interchangeable. The unique s ↔ t path in this

tree is found by reading backwards from t:

s ↔ d ↔ g ↔ j ↔ t.

4. (i) We apply Euler’s theorem in the form v− e+ r = 2, thus counting the exterior of

the graph as a region. Consider the set of pairs

S = {(ε, ρ) : ε is an edge on the boundary of region ρ.
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On the one hand, each edge is either on the boundary between exactly two regions or is

a “hanging edge” which only bounds the exterior region. Hence |S| ≤ 2e. On the other

hand, since the graph is simple, each region must be bounded by at least three edges, so

|S| ≥ 3r.

It follows that 3r ≤ 2e, thus r ≤ 2e/3. Substituting into Euler’s formula we get

e = v + r − 2 ≤ v − 2 +
2e

3
⇒

e

3
≤ v − 2 ⇒ e ≤ 3v − 6, v.s.v.

(ii) Induction on v = |V (G)|. Clearly the result holds if v < 3, since trivially χ(G) ≤
|V (G)|. Suppose the result holds for all plane graphs on at most n ≥ 3 vertces and let

G be a plane graph with n + 1 vertices. By part (i) and the degree equation (Theorem

15.4) it follows that G must possess a vertex of degree at most 5. Let v0 be any such

vertex and let G′ be the graph obtained by removing v0 and all its adjacent edges. This

graph is still plane and has n vertices, so by the induction assumption it can be colored

with at most 6 colors. But since v0 has degree at most 5 in G, at least one of the 6 colors

is not used on any neighbor of v0 and hence the 6-coloring of G′ can be extended to a

6-coloring of G, v.s.v.


