Excercise section 1: Repetition of basic statistics

MVE220/MSA400

Problems for exercise session 1

During the exercise session 27.03.2023 we will consider the following problems (translated from [1]))

1) Two dice are thrown. Assume their sum was 4 . What is the conditional probability that
a) The first dice showed 3
b) The second dice showed 2 or less
c) Both dice showed an odd number
2) Let Y be a random variable with the cdf

$$
F(t)= \begin{cases}0 & t<0 \\ t^{2} & 0 \leq t \leq 1 \\ 1 & t>1\end{cases}
$$

a) Sketch $F(t)$
b) Calculate $P(Y \leq 0.5)$
c) Calculate $P(0.5<Y \leq 0.9)$
3) Calculate the expectation and standard deviation of X.
4) Let (X, Y) be given with pdf $f_{X, Y}(x, y)=x+y, 0 \leq x \leq 1,0 \leq y \leq 1$. Calculate $E[X], E[Y], \operatorname{Var}(X), \operatorname{Var}(Y), \operatorname{Cov}(X, Y)$ and $\rho(X, Y)$.
5) Let $\{N(t), t \geq 0\}$ be a Poisson process with $\lambda=2$. Calculate
a) $P(N(1)=0)$
b) $P(N(3)=4)$
c) $P(N(2) \leq 3)$
d) $P(N(0.5)>1)$
6) Nine observations were obtained from a distribution with pdf

$$
f(x)=\frac{x}{\theta^{2}} e^{x / \theta}
$$

Find the ML-estimate of θ.

$$
\begin{array}{c|c|c|c|c|c}
k & 1 & 2 & 3 & 4 & 5 \\
\hline p_{X}(k) & 0.2 & 0.1 & 0.3 & 0.1 & 0.3
\end{array}
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
2.2	5.5	1.7	1.3	3.5	3.2	0.6	3.8	1.9

7) The random variable X is Poisson distributed with expected value μ. The 95% confidence interval for μ is $I_{\mu}=(0.8,2.0)$. Calculate the 95% confidence interval for $p:=P(X=0)$.

Suggested problems that cover specific topics:

For further practice, I recommended the following problems from Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences[2].
(i) Probability densities (chapter 3.2, 4.1): 3.8, 4.1, 4.9
(ii) Independent events, conditional probabilities (chapter 2.2, 2.3): 2.15, 2.18
(iii) Poisson distribution (chapter 3.8): 3.8, 3.61, 3.63
(iv) Expected value, variance, moments (chapter 3.3): 3.13, 3.21
(v) Correlation (chapter 5.3): 5.20, 5.27
(vi) Point estimation (chapter 7.1): 7.5, 7.32
(vii) Confidence intervals (chapter 7.4): 7.47

References

[1] Sven Erick Alm and Tom Britton. Stokastik: sannolikhetsteori och statistikteori med tillämpningar. Liber, 2008.
[2] Milton J Susan and Jesse C Arnold. Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences. John Wiley \& Sons, 2003.

