Repetition of basic statistics

MVE220

Helga Kristín Ólafsdóttir
Mars 27, 2023
Problems are translated from [1]

Independent Events

Assume $P(B)>0$. Then the conditional probability of A given B is

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

Problem 1 - Independent Events (2.5.5. in [1])

Two dice are thrown. Assume their sum was 4. What is the conditional probability that
a) The first dice showed 3
b) The second dice showed 2 or less
c) Both dice showed an odd number

Distribution function

A random variable X can be discrete or continuous.

- If X discrete: probability function $p_{X}(x):=P(X=x)$,

$$
x=x_{1}, x_{2}, \ldots
$$

- If X continuous: probability density function (pdf) f_{X} s.t.

$$
P(X \in A)=\int_{A} f_{X}(t) d t
$$

In both cases: (cumulative) distribution function (cdf)

$$
F_{X}(t):=P(X \leq t), \quad-\infty<t<\infty
$$

For the cdf we have

- $F(t) \in[0,1]$
- $F(t) \underset{t \rightarrow-\infty}{\longrightarrow} 0$, and $F(t) \underset{t \rightarrow \infty}{\longrightarrow} 1$
- $P(a<X \leq b)=F(b)-F(a)$
- $P(X>a)=1-F(a)$

Problem 2 - Distribution function (3.3.1. in [1])

Let Y be a random variable with the cdf

$$
F(t)= \begin{cases}0 & t<0 \\ t^{2} & 0 \leq t \leq 1 \\ 1 & t>1\end{cases}
$$

a) Sketch $F(t)$
b) Calculate $P(Y \leq 0.5)$
c) Calculate $P(0.5<Y \leq 0.9)$

Expected value etc.

Expected value

$E[X]=\sum_{k} k P(X=k)$ if X discrete
$E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$ if X continuous
$E[g(X)]$
$E[g(X)]=\sum_{k} g(k) P(X=k)$ if X discrete
$E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$ if X continuous

k:th Moment

$E\left[X^{k}\right]$

Expected value etc.

Variance

$\sigma^{2}=\operatorname{Var}(X):=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$

Standard deviation

$\sigma=\sqrt{\operatorname{Var}(X)}$

Problem 3 - Expected value etc. (3.5.1. in [1])

Calculate the expectation and standard deviation of X.

k	1	2	3	4	5
$p_{X}(k)$	0.2	0.1	0.3	0.1	0.3

Correlation

Covariance

$\operatorname{Cov}(X, Y):=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]$
Correlation coefficient
$\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$
X, Y are uncorrelated if $\operatorname{Cov}(X, Y)=0$

Problem 4 - Correlation (3.8.3. in [1])

Let (X, Y) be given with pdf $f_{X, Y}(x, y)=x+y, 0 \leq x \leq 1,0 \leq y \leq 1$. Calculate $E[X], E[Y], \operatorname{Var}(X), \operatorname{Var}(Y), \operatorname{Cov}(X, Y)$ and $\rho(X, Y)$.

Poisson processes

Poisson distribution

$$
\begin{aligned}
& X \sim P o(\lambda) P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad k=0,1,2, \ldots \\
& E[X]=\lambda, \quad \operatorname{Var}(X)=\lambda
\end{aligned}
$$

Stochastic process

$\{X(t), t \in I\}$ family of random variables with index t from the index set 1.

Poisson process

Let $\left\{U_{k}, k=1,2,3 \ldots\right\}$ be a sequence of i.i.d. $\operatorname{Exp}(\lambda)$ distributed random variables.
$T_{n}:=\sum_{k=1}^{n} U_{k}$ is the time of the n-th event.
Define $N(t):=$ events in $(0, t], \quad N(0)=0$.
Then $\{N(t), t \geq 0\}$ is a Poisson process with intensity λ.

Poisson processes

Independent increments of Poisson process
$N(s+t)-N(s) \sim P o(\lambda t)$
$N(t) \sim \operatorname{Po}(\lambda t)$

Problem 5 - Poisson processes (4.3.1. in [1])

Let $\{N(t), t \geq 0\}$ be a Poisson process with $\lambda=2$. Calculate
a) $P(N(1)=0)$
b) $P(N(3)=4)$
c) $P(N(2) \leq 3)$
d) $P(N(0.5)>1)$

Point estimation

Let $x_{1}, x_{2}, \ldots, x_{n}$ be observations of X that follows a distribution with some unknown parameter θ. Then we can estimate θ with θ^{*}

Maximum likelihood method

We want to find θ^{*} that maximises the Likelihood function

$$
L(\theta)= \begin{cases}\prod_{i=1}^{n} p\left(x_{i} ; \theta\right) & X \text { discrete } \\ \prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & X \text { continuous }\end{cases}
$$

Easier to handle the log-likelihood function

$$
I(\theta)=\ln (L(\theta))= \begin{cases}\sum_{i=1}^{n} \ln \left(p\left(x_{i} ; \theta\right)\right) & X \text { discrete } \\ \sum_{i=1}^{n} \ln \left(f\left(x_{i} ; \theta\right)\right) & X \text { continuous }\end{cases}
$$

Problem 6 - Point estimation (7.2.9. in [1])

Nine observations were obtained from a distribution with pdf

$$
f(x)=\frac{x}{\theta^{2}} e^{x / \theta}
$$

Find the ML-estimate of θ.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
2.2	5.5	1.7	1.3	3.5	3.2	0.6	3.8	1.9

Confidence intervals

Given observations \mathbf{x} we want to compute a $(1-\alpha) \%$ confidence interval $I_{\theta}=\left(\theta_{1}(\mathbf{x}), \theta_{2}(\mathbf{x})\right)$, where $P\left(\theta_{1}(\mathbf{X})<\theta<\theta_{2}(\mathbf{X})\right)=1-\alpha$

Problem 7 - Confidence intervals (7.3.1. in [1])

The random variable X is Poisson distributed with expected value μ. The 95% confidence interval for μ is $I_{\mu}=(0.8,2.0)$. Calculate the 95% confidence interval for $p:=P(X=0)$.

References

[1] Sven Erick Alm and Tom Britton. Stokastik: sannolikhetsteori och statistikteori med tillämpningar. Liber, 2008.

