Repetition of basic statistics

MVE220

Helga Kristín Ólafsdóttir

Mars 27, 2023

Problems are translated from $\left[1\right]$

Independent Events

Assume P(B) > 0. Then the **conditional probability** of A given B is

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

A and B are independent if

$$P(A \cap B) = P(A)P(B)$$

1

Problem 1 - Independent Events (2.5.5. in [1])

Two dice are thrown. Assume their sum was 4. What is the conditional probability that

- a) The first dice showed 3
- b) The second dice showed 2 or less
- c) Both dice showed an odd number

Distribution function

A random variable X can be discrete or continuous.

- If X discrete: **probability function** $p_X(x) := P(X = x), x = x_1, x_2, ...$
- If X continuous: **probability density function (pdf)** f_X s.t. $P(X \in A) = \int_A f_X(t) dt$

In both cases: (cumulative) distribution function (cdf)

$$F_X(t) := P(X \le t), -\infty < t < \infty$$

For the cdf we have

- $F(t) \in [0,1]$
- ullet $F(t) \underset{t \to -\infty}{\longrightarrow} 0$, and $F(t) \underset{t \to \infty}{\longrightarrow} 1$
- $P(a < X \le b) = F(b) F(a)$
- P(X > a) = 1 F(a)

Problem 2 - Distribution function (3.3.1. in [1])

Let Y be a random variable with the cdf

$$F(t) = egin{cases} 0 & t < 0 \ t^2 & 0 \leq t \leq 1 \ 1 & t > 1 \end{cases}$$

- a) Sketch F(t)
- b) Calculate $P(Y \le 0.5)$
- c) Calculate $P(0.5 < Y \le 0.9)$

Expected value etc.

Expected value

$$E[X] = \sum_{k} kP(X = k)$$
 if X discrete

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$
 if X continuous

E[g(X)]

$$E[g(X)] = \sum_{k} g(k)P(X = k)$$
 if X discrete

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$
 if X continuous

k:th Moment

$$E[X^k]$$

Expected value etc.

Variance

$$\sigma^2 = Var(X) := E[(X - E[X])^2] = E[X^2] - E[X]^2$$

Standard deviation

$$\sigma = \sqrt{Var(X)}$$

Problem 3 - Expected value etc. (3.5.1. in [1])

Calculate the expectation and standard deviation of X.

k	1	2	3	4	5
$p_X(k)$	0.2	0.1	0.3	0.1	0.3

Correlation

Covariance

$$Cov(X, Y) := E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

Correlation coefficient

$$\rho(X,Y) := \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

$$X, Y$$
 are **uncorrelated** if $Cov(X, Y) = 0$

Problem 4 - Correlation (3.8.3. in [1])

Let (X, Y) be given with pdf $f_{X,Y}(x,y) = x + y$, $0 \le x \le 1$, $0 \le y \le 1$. Calculate E[X], E[Y], Var(X), Var(Y), Cov(X, Y) and $\rho(X, Y)$.

Poisson processes

Poisson distribution

$$X \sim Po(\lambda) \ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ k = 0, 1, 2, ...$$

 $E[X] = \lambda, \ Var(X) = \lambda$

Stochastic process

 $\{X(t), t \in I\}$ family of random variables with index t from the index set I.

Poisson process

Let $\{U_k, k = 1, 2, 3...\}$ be a sequence of i.i.d. $Exp(\lambda)$ distributed random variables.

 $T_n := \sum_{k=1}^n U_k$ is the time of the *n*-th event.

Define $N(t) := \text{events in } (0, t], \quad N(0) = 0.$

Then $\{N(t), t \ge 0\}$ is a **Poisson process** with intensity λ .

Poisson processes

Independent increments of Poisson process

$$N(s+t)-N(s)\sim Po(\lambda t)$$

$$N(t) \sim Po(\lambda t)$$

Problem 5 - Poisson processes (4.3.1. in [1])

Let $\{N(t), t \geq 0\}$ be a Poisson process with $\lambda = 2$. Calculate

- a) P(N(1) = 0)
- b) P(N(3) = 4)
- c) $P(N(2) \le 3)$
- d) P(N(0.5) > 1)

Point estimation

Let $x_1, x_2, ..., x_n$ be observations of X that follows a distribution with some unknown parameter θ . Then we can **estimate** θ with θ^*

Maximum likelihood method

We want to find θ^* that maximises the **Likelihood function**

$$L(\theta) = \begin{cases} \prod_{i=1}^{n} p(x_i; \theta) & X \text{ discrete} \\ \prod_{i=1}^{n} f(x_i; \theta) & X \text{ continuous} \end{cases}$$

Easier to handle the log-likelihood function

$$I(\theta) = In(L(\theta)) = \begin{cases} \sum_{i=1}^{n} In(p(x_i; \theta)) & X \text{ discrete} \\ \sum_{i=1}^{n} In(f(x_i; \theta)) & X \text{ continuous} \end{cases}$$

Problem 6 - Point estimation (7.2.9. in [1])

Nine observations were obtained from a distribution with pdf

$$f(x) = \frac{x}{\theta^2} e^{x/\theta}$$

Find the ML-estimate of θ .

	<i>x</i> ₂							
2.2	5.5	1.7	1.3	3.5	3.2	0.6	3.8	1.9

Confidence intervals

Given observations \mathbf{x} we want to compute a $(1 - \alpha)\%$ confidence interval $I_{\theta} = (\theta_1(\mathbf{x}), \theta_2(\mathbf{x}))$, where $P(\theta_1(\mathbf{X}) < \theta < \theta_2(\mathbf{X})) = 1 - \alpha$

Problem 7 - Confidence intervals (7.3.1. in [1])

The random variable X is Poisson distributed with expected value μ . The 95% confidence interval for μ is $I_{\mu}=(0.8,2.0)$. Calculate the 95% confidence interval for p:=P(X=0).

References

[1] Sven Erick Alm and Tom Britton. *Stokastik: sannolikhetsteori och statistikteori med tillämpningar.* Liber, 2008.