Exercises in Financial Risk: Extreme Value Statistics

MVE220/MSA400

- 1. In a peaks over thresholds analysis to compute VaR for the daily losses of a stock, the threshold u=2.2 was chosen such that 3% of the losses were above u, and one then fitted a GP distribution to the excesses over the threshold. The estimated scale parameter was $\sigma=0.71$ and the estimated shape parameter was $\gamma=0.15$. What is then the estimated 99% daily VaR for the stock?
- 2. The block maxima method was applied to a data set and yielded the maximum likelihood estimate

$$(\hat{\mu}, \hat{\sigma}, \hat{\xi}) = (-1.64, 0.27, -0.084)$$

with a maximized value of the log-likelihood equal to -14.3. The corresponding estimated variance-covariance matrix is

$$V = \begin{bmatrix} 0.00141 & 0.000214 & -0.000795 \\ 0.000214 & 0.000652 & -0.000441 \\ -0.000795 & -0.000441 & 0.00489 \end{bmatrix}.$$

Compute a 95% confidence interval for the shape parameter ξ .

- 3. Suppose that the monthly maximum losses of a financial instrument has a GEV distribution with location parameter μ , scale parameter σ and shape parameter $\gamma \neq 0$, and that the monthly losses are independent. Then also the yearly maximum losses have a GEV distribution. What are the parameters of this distribution?
- 4. Suppose $X_1, X_2, ...$ are independent and exponentially distributed random variables with parameter σ (so that their cumulative distribution function is $F(x) = 1 e^{-x/\sigma}$ for $x \geq 0$ and F(x) = 0 for x < 0), and define $M_n = \max\{X_1, ..., X_n\}$. Find norming values a_n, b_n such that

$$P\left(\frac{M_n - a_n}{b_n} \le x\right) \to e^{-e^{-x}}, \quad \text{as } n \to \infty.$$

5. Suppose a data set contains 7-day losses (= - returns) during the last 2 years for a portfolio, and that the mean and standard deviation of the losses are -0.002 and 0.03, respectively. If one assumes that losses are normally distributed and that SEK 1.7 million is invested in the portfolio, what is then the 7-day 99% VaR, in SEK, for the portfolio?

- 6. Suppose that daily portfolio losses are identically distributed and that 7-day maximum losses expressed in % have a GEV distribution function with estimated location parameter $\hat{\mu}=0.96$, estimated scale parameter $\hat{\sigma}=1.17$, and estimated shape parameter $\hat{\gamma}=0.21$, and that the extremal index has been estimated to be $\hat{\theta}=0.73$. Compute an estimate for the 1-day 95% VaR for such a portfolio with an initial value of SEK 1.7 million.
- 7. Suppose that an excesses of a threshold u has a GP distribution with scale parameter σ and shape parameter γ , where it for simplicity is assumed that $\gamma > 0$. Assume that v > 0. Then the conditional distribution of excesses of the level u + v is also a GP distribution. What are the parameters of this distribution?
- 8. In a peaks over thresholds analysis to compute VaR one assumed that from very long experience it was known that the 95% quantile of the losses was exactly 2.60, with negligible error. Further, one used a GP distribution with shape parameter $\gamma=0$, so that the distribution function was $H(x)=1-e^{-x/\sigma}$, to model the excesses over the threshold 2.60. The estimated parameter was $\hat{\sigma}=0.90$, and the standard deviation of $\hat{\sigma}$ was estimated to be 0.057. Let $\widehat{VaR}_{.8}(H)$ be the the estimated 80% VaR of the distribution function H, so that the estimated 0.99 VaR of the losses equals $2.60+\widehat{VaR}_{.8}(H)$. Find a 95% confidence interval for the 99% VaR of the losses.
- 9. Suppose that 5-day maximum losses are mutually independent and have a GEV distribution function with location parameter μ , scale parameter σ , and shape parameter γ . Then 20-day maximum losses also have a GEV distribution. What are the location, scale, and shape parameter for this distribution?
- 10. Suppose that the 5-day maximum loss (= returns) has a GEV distribution function with location parameter $\mu = 1.27$, scale parameter $\sigma = 0.79$ and shape parameter $\gamma = 0.14$, and that additionally the extremal index is $\theta = 0.73$. Compute the one-day VaR from this.
- 11. In a peaks over thresholds analysis to compute VaR one used the threshold u=1.7 chosen such that 5% of the losses were above u and fitted a GP distribution to the excesses over the thresholds. The estimated parameters were $\hat{\sigma}=0.8$ and $\hat{\gamma}=0.1$. Find an estimate of the 99% VaR.
- 12. Suppose $X_1, X_2, ...$ are independent and uniformly distributed random variables (so that their cumulative distribution function is F(x) = x for $x \in [0; 1]$), and define $M_n = \max\{X_1, ..., X_n\}$. Show that for normalizing constants $a_n = 1, b_n = \frac{1}{n}$ it holds that

$$P\left(\frac{M_n - a_n}{b_n} \le x\right) \to e^x$$
, for $x \in [0, 1]$, as $n \to \infty$.

13. Let X_1 and X_2 be independent random variables which both have a GEV distribution function with shape parameter $\gamma = 0$, scale parameter $\sigma = 1.3$ and location parameter $\mu = 2.1$, so that they both have cumulative distribution function

$$G(x) = e^{-e^{-\frac{x-2.1}{1.3}}}.$$

Then also $M = \max\{X_1, X_2\}$, the maximum of X_1 and X_2 , has a GEV distribution function. Find the shape, scale, and location parameters of this GEV distribution function of M.

14. The block maxima method was applied to a data set on glass fibre strengths and yielded the maximum likelihood estimate

$$(\hat{\mu}, \hat{\sigma}, \hat{\xi}) = (-1.64, 0.27, -0.084)$$

with a maximized value of the log-likelihood equal to -14.3. The corresponding estimated variance-covariance matrix is

$$V = \begin{bmatrix} 0.00141 & 0.000214 & -0.000795 \\ 0.000214 & 0.000652 & -0.000441 \\ -0.000795 & -0.000441 & 0.00489 \end{bmatrix}.$$

Compute a 95% confidence interval for the scale parameter σ .

- 15. Suppose you have observed a sample $x_1, x_2, ..., x_n$ from a GP distribution with shape parameter $\gamma = 0$ and scale parameter σ .
 - a) Find the maximum likelihood estimator $\hat{\sigma}$ of σ .
 - b) Use observed information to find an estimate of the variance of $\hat{\sigma}$.
- 16. For the PoT model with threshold u, suppose that $P(L > u) = p_u$. Show that for $p > p_u$,

$$VaR_p(L) = \frac{\sigma}{\gamma} \left\{ \left(\frac{1-p}{p_u} \right)^{-\gamma} - 1 \right\} + u$$

and

$$ES_p(L) = VaR_p(L) + \frac{\sigma + \gamma(VaR_p(L) - u)}{1 - \gamma}$$

- 17. A portfolio of loans may lead to the losses L with the probabilities in the table below. Calculate $ES_{\alpha}(L)$ for
 - a) $\alpha = 0.95$
 - b) $\alpha = 0.99$

18. Loss L follows the exponential distribution $L \sim \exp(1)$, i.e. $F(x) = \begin{cases} 1 - e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$. Calculate $ES_{0.95}(L)$.

3