Exercises in Financial Risk: Extreme Value Statistics

MVE220/MSA400

1. In a peaks over thresholds analysis to compute VaR for the daily losses of a stock, the threshold $u=2.2$ was chosen such that 3% of the losses were above u, and one then fitted a GP distribution to the excesses over the threshold. The estimated scale parameter was $\sigma=0.71$ and the estimated shape parameter was $\gamma=0.15$. What is then the estimated 99% daily VaR for the stock?
2. The block maxima method was applied to a data set and yielded the maximum likelihood estimate

$$
(\hat{\mu}, \hat{\sigma}, \hat{\xi})=(-1.64,0.27,-0.084)
$$

with a maximized value of the log-likelihood equal to -14.3 . The corresponding estimated variance-covariance matrix is

$$
V=\left[\begin{array}{ccc}
0.00141 & 0.000214 & -0.000795 \\
0.000214 & 0.000652 & -0.000441 \\
-0.000795 & -0.000441 & 0.00489
\end{array}\right] .
$$

Compute a 95% confidence interval for the shape parameter ξ.
3. Suppose that the monthly maximum losses of a financial instrument has a GEV distribution with location parameter μ, scale parameter σ and shape parameter $\gamma \neq$ 0 , and that the monthly losses are independent. Then also the yearly maximum losses have a GEV distribution. What are the parameters of this distribution?
4. Suppose X_{1}, X_{2}, \ldots are independent and exponentially distributed random variables with parameter σ (so that their cumulative distribution function is $F(x)=1-e^{-x / \sigma}$ for $x \geq 0$ and $F(x)=0$ for $x<0$), and define $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Find norming values a_{n}, b_{n} such that

$$
P\left(\frac{M_{n}-a_{n}}{b_{n}} \leq x\right) \rightarrow e^{-e^{-x}}, \quad \text { as } n \rightarrow \infty .
$$

5. Suppose a data set contains 7-day losses (=-returns) during the last 2 years for a portfolio, and that the mean and standard deviation of the losses are -0.002 and 0.03 , respectively. If one assumes that losses are normally distributed and that SEK 1.7 million is invested in the portfolio, what is then the 7 -day $99 \% \mathrm{VaR}$, in SEK, for the portfolio?
6. Suppose that daily portfolio losses are identically distributed and that 7-day maximum losses expressed in \% have a GEV distribution function with estimated location parameter $\hat{\mu}=0.96$, estimated scale parameter $\hat{\sigma}=1.17$, and estimated shape parameter $\hat{\gamma}=0.21$, and that the extremal index has been estimated to be $\hat{\theta}=0.73$. Compute an estimate for the 1-day $95 \% \mathrm{VaR}$ for such a portfolio with an initial value of SEK 1.7 million.
7. Suppose that an excesses of a threshold u has a GP distribution with scale parameter σ and shape parameter γ, where it for simplicity is assumed that $\gamma>0$. Assume that $v>0$. Then the conditional distribution of excesses of the level $u+v$ is also a GP distribution. What are the parameters of this distribution?
8. In a peaks over thresholds analysis to compute VaR one assumed that from very long experience it was known that the 95% quantile of the losses was exactly 2.60 , with negligible error. Further, one used a GP distribution with shape parameter $\gamma=0$, so that the distribution function was $H(x)=1-e^{-x / \sigma}$, to model the excesses over the threshold 2.60. The estimated parameter was $\hat{\sigma}=0.90$, and the standard deviation of $\hat{\sigma}$ was estimated to be 0.057 . Let $\widehat{V a R}_{8}(H)$ be the the estimated $80 \% \mathrm{VaR}$ of the distribution function H , so that the estimated 0.99 VaR of the losses equals $2.60+\widehat{V a R}_{.8}(H)$. Find a 95% confidence interval for the 99% VaR of the losses.
9. Suppose that 5-day maximum losses are mutually independent and have a GEV distribution function with location parameter μ, scale parameter σ, and shape parameter γ. Then 20-day maximum losses also have a GEV distribution. What are the location, scale, and shape parameter for this distribution?
10. Suppose that the 5 -day maximum loss ($=-$ returns) has a GEV distribution function with location parameter $\mu=1.27$, scale parameter $\sigma=0.79$ and shape parameter $\gamma=0.14$, and that additionally the extremal index is $\theta=0.73$. Compute the one-day VaR from this.
11. In a peaks over thresholds analysis to compute VaR one used the threshold $u=1.7$ chosen such that 5% of the losses were above u and fitted a GP distribution to the excesses over the thresholds. The estimated parameters were $\hat{\sigma}=0.8$ and $\hat{\gamma}=0.1$. Find an estimate of the 99% VaR.
12. Suppose X_{1}, X_{2}, \ldots are independent and uniformly distributed random variables (so that their cumulative distribution function is $F(x)=x$ for $x \in[0 ; 1]$), and define $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Show that for normalizing constants $a_{n}=1, b_{n}=\frac{1}{n}$ it holds that

$$
P\left(\frac{M_{n}-a_{n}}{b_{n}} \leq x\right) \rightarrow e^{x}, \quad \text { for } x \in[0,1], \text { as } n \rightarrow \infty .
$$

13. Let X_{1} and X_{2} be independent random variables which both have a GEV distribution function with shape parameter $\gamma=0$, scale parameter $\sigma=1.3$ and location parameter $\mu=2.1$, so that they both have cumulative distribution function

$$
G(x)=e^{-e^{-\frac{x-2.1}{1.3}}}
$$

Then also $M=\max \left\{X_{1}, X_{2}\right\}$, the maximum of X_{1} and X_{2}, has a GEV distribution function. Find the shape, scale, and location parameters of this GEV distribution function of M.
14. The block maxima method was applied to a data set on glass fibre strengths and yielded the maximum likelihood estimate

$$
(\hat{\mu}, \hat{\sigma}, \hat{\xi})=(-1.64,0.27,-0.084)
$$

with a maximized value of the log-likelihood equal to -14.3 . The corresponding estimated variance-covariance matrix is

$$
V=\left[\begin{array}{ccc}
0.00141 & 0.000214 & -0.000795 \\
0.000214 & 0.000652 & -0.000441 \\
-0.000795 & -0.000441 & 0.00489
\end{array}\right] .
$$

Compute a 95% confidence interval for the scale parameter σ.
15. Suppose you have observed a sample $x_{1}, x_{2}, \ldots, x_{n}$ from a GP distribution with shape parameter $\gamma=0$ and scale parameter σ.
a) Find the maximum likelihood estimator $\hat{\sigma}$ of σ.
b) Use observed information to find an estimate of the variance of $\hat{\sigma}$.
16. For the PoT model with threshold u, suppose that $P(L>u)=p_{u}$. Show that for $p>p_{u}$,

$$
\operatorname{VaR}_{p}(L)=\frac{\sigma}{\gamma}\left\{\left(\frac{1-p}{p_{u}}\right)^{-\gamma}-1\right\}+u
$$

and

$$
E S_{p}(L)=\operatorname{Va}_{p}(L)+\frac{\sigma+\gamma\left(V a R_{p}(L)-u\right.}{1-\gamma}
$$

17. A portfolio of loans may lead to the losses L with the probabilities in the table below. Calculate $E S_{\alpha}(L)$ for
a) $\alpha=0.95$
b) $\alpha=0.99$

$$
\begin{array}{c|ccccccc}
\text { loss (million dollars) } & 1 & 2 & 5 & 10 & 20 & 30 & 40 \\
\hline \text { probability (\%) } & 40 & 33 & 10 & 12 & 2 & 2.7 & 0.3
\end{array}
$$

18. Loss L follows the exponential distribution $L \sim \exp (1)$, i.e. $F(x)=\left\{\begin{array}{ll}1-e^{-x}, & x \geq 0 \\ 0, & x<0\end{array}\right.$. Calculate $E S_{0.95}(L)$.
