
Gudrun January 2005
326 MEuro loss
72 % due to forest losses  
4 times larger than second largest                         

Financial Risk

4-th quarter 2022/23

Lecture 3: ML 

inference, wind 

storm insurance

1

Corona risks

The big recession 2009 Windstorm

insurance



Maximum Likelihood (ML) inference   (Coles p. 
30-43)

Likelihood function  =  the function which shows how the “probability” (or 
likelihood) of getting the observed data depends on the parameters 

𝑥1, … 𝑥𝑛 observations of i.i.d. variables  𝑋1, … , 𝑋𝑛, density  𝑓 𝑥 = 𝑓(𝑥; 𝜃)

𝜃 = (𝜃1, … , 𝜃𝑑) parameters

𝐿 𝜃 = 𝑓 𝑥1; 𝜃 𝑓 𝑥2; 𝜃 …𝑓(𝑥𝑛; 𝜃) likelihood function

ℓ 𝜃 = log 𝑓 𝑥1; 𝜃 + log 𝑓 𝑥2; 𝜃 +… log 𝑓 𝑥𝑛; 𝜃 log likelihood function

ML estimates  = the value  መ𝜃 = ( መ𝜃1… መ𝜃𝑑) which maximizes the (log) 
likelihood function 

• Ml estimates often have to be found through numerical maximization

• sometimes a maximum doesn’t exist

• sometimes several local maxima (→ problem for numerical maximization)

• but typically no problems if  the number of observations is “large”
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Apple losses (= - 100 ×
price tomorrow−price today

price today
) one year back

quarter 4 quarter 2quarter  1 Quarter 3 

Maximum quarterly loss excess of the level 𝑢 = 1.92

How large is the risk of  a big quarterly loss? BM

How large is the risk of a big loss tomorrow?  PoT
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Example:  ML estimation of the parameters in the PoT model

T =  length of observation period
N  =  number of observed excesses (random variable!)

observed excess sizes
𝜃 = (𝜆, 𝜎, 𝛾) parameters

The probability of observing  N excesses is                                ,    
independence   ֜

obtained from numerical maximization of the second part of
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ML inference: asymptotic properties

expected Fisher information matrix, estimated  by

or by 𝐼( መ𝜃) where 𝐼 𝜃 = (−
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
ℓ 𝜃 ) is   the the observed Fisher 

information matrix. (In the expected Fisher information matrix, the 
observations are replaced by the corresponding random variables when the 
expectations are computed. Numerical optimization programs typically 
compute the Hessian, −𝐼 𝜃 ) 

In particular, the variance  of      may be estimated by     (                   = the i-th
diagonal element of              ), or by                   .. The latter is often more accurate.

asymptotically has a d-dimensional multivariate normal 
distribution with mean      and variance

𝑘𝛼 = the 𝛼-th quantile of the standard normal distribution (𝑘0.975 = 1.96)

( መ𝜃𝑖 − 𝑘1−(1−𝛼)/2 (𝐼 መ𝜃
−1
)𝑖,𝑖 , መ𝜃𝑖+𝑘1−(1−𝛼)/2 (𝐼 መ𝜃

−1
)𝑖,𝑖 )   asymptotic 

100𝛼%  confidence interval                                                                            
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Exercise: Compute  a confidence interval for the parameter in a 
Poisson process

𝑇 =  length of observation period = 5 years  
𝑁 =  number of observed excesses = 31  
𝜆 = parameter (= yearly intensity =expected number of excesses

per year) of Poisson process
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Solution:

L 𝜆 =
𝜆𝑇 𝑁

𝑁!
𝑒−𝜆𝑇

log ℓ(𝜆) = 𝑁log 𝜆 + 𝑁log 𝑇 − log 𝑁! − 𝜆𝑇

𝑑log ℓ(𝜆)

𝑑𝜆
=

𝑁

𝜆
− 𝑇 = 0 ֜ መ𝜆 =

𝑁

𝑇
=

31

5
= 6.25

𝐼 𝜆 = −
𝑑2log ℓ 𝜆

𝑑𝜆2
= −

𝑁

𝜆2

Estimated variance of  መ𝜆 is −
1

𝐼 ෡𝜆
=

෡𝜆2

𝑛

95% confidence interval:

( መ𝜆 − k0.975 መ𝜆2/𝑛, መ𝜆 + k0.975 መ𝜆2/𝑛)

= (6.25 − 1.96
6.25

31
, 6.25 + 1.96

6.25

31
)
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ML inference:  the delta method 

function of the parameters                                                                                               

asymptotically normal with mean      and  variance                                  

gradient,             estimate of gradient

(which e.g. can be estimated by                                  ) .

estimate of the function of the parameters

From this one can  construct  confidence intervals for 𝜂 in the same way 
as the confidence intervals for  𝜃 on the previous page.

Works well if 𝑔 is approximatly linear, not so well otherwise
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Exercise: Compute  a confidence interval for the 95% quantile 

in a GP distribution based on observations 𝑥1, 𝑥2, … 𝑥𝑁

The GP density is ℎ 𝑥; 𝜎, 𝛾 =
1

𝜎
1 +

𝛾

𝜎
𝑥

−
1

𝛾
−1

log ℎ 𝑥; 𝜎, 𝛾 = − log 𝜎 −
1

𝛾
+ 1 log 1 +

𝛾

𝜎
𝑥

𝑑

𝑑𝜎
log ℎ 𝑥; 𝜎, 𝛾 = −

1

𝜎
+
1 + 𝛾

𝜎2
𝑥

1 +
𝛾
𝜎
𝑥

𝑑

𝑑𝛾
log ℎ 𝑥; 𝜎, 𝛾 =

1

𝛾2
log 1 +

𝛾

𝜎
𝑥 −

1

𝛾
+ 1

1

𝜎

𝑥

1 +
𝛾
𝜎
𝑥
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log likelihood function

ℓ 𝜎, 𝛾 =෍

𝑖=1

𝑁

log ℎ 𝑥𝑖; 𝜎, 𝛾

ML-estimates ො𝜎, ො𝛾 obtained as solutions to the equations

෍

𝑖=1

𝑁
𝑑

𝑑𝜎
log ℎ 𝑥𝑖; 𝜎, 𝛾 =0

෍

𝑖=1

𝑁
𝑑

𝑑𝛾
log ℎ 𝑥𝑖; 𝜎, 𝛾 =0

Observed information matrix obtained by inserting estimates into

𝐼 𝜎, 𝛾 =

−
𝑑2

𝑑𝜎2
ℓ 𝜎, 𝛾 −

𝑑2

𝑑𝜎𝑑𝛾
ℓ 𝜎, 𝛾

−
𝑑2

𝑑𝜎𝑑𝛾
ℓ 𝜎, 𝛾 −

𝑑2

𝑑𝛾2
ℓ 𝜎, 𝛾
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The 95% quantile 𝑥.95 in a GP distribution is obtained by solving

𝐻 𝑥.95 = 1 − 1 +
𝛾

𝜎
𝑥.95

−
1
𝛾
= 0.95

The solution is 

𝑔 𝜎, 𝛾 = 𝑥.95 =
𝜎

𝛾
(0.05−𝛾 − 1 )

so the maximum likelihood estimate is 

ො𝑥.95 =
ො𝜎

ො𝛾
0.05−ෝ𝛾 − 1

∇ 𝜎, 𝛾 =
𝑑

𝑑𝜎
𝑔 𝜎, 𝛾 ,

𝑑

𝑑𝛾
𝑔 𝜎, 𝛾

=
1

𝛾
0.05−𝛾 − 1 ,−

𝜎

𝛾2
0.05−𝛾 − 1 −

𝛾

𝜎
−log 0.05 0.05−𝛾
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The standard error of ො𝑥.95 is estimated as

SE ො𝑥.95 = ∇ ො𝜎, ො𝛾 𝐼( ො𝜎, ො𝛾)−1∇ ො𝜎, ො𝛾 𝑇

and a 95% asymptotic confidence interval is

( ො𝑥.95 − 1.96SE ෞ𝑥.95 , ො𝑥.95 + 1.96SE ෞ𝑥.95 )
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ML inference: Likelihood Ratio (LR) tests 

partition of       into two vectors       and       of dimensions  

𝑑 − 𝑝 and  𝑝.          maximizes                   over      , for     “kept fixed” (so 
function of     )    

asymptotically has a        distribution with  𝑑 − 𝑝

degrees of freedom if      is the true value   → LR test:                        

Reject                             at the  significance level  𝛼 %   if 

2 𝑙( መ𝜃) − 𝑙 𝜃1
0, መ𝜃2

∗ > 𝜒𝛼
2 𝑑 − 𝑝 ,  where                       is the (1 − 𝛼)-th

quantile of the       distribution with  
𝑑 − 𝑝 degrees of freedom
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ML inference:  profile likelihood confidence intervals
(often more accurate than delta method intervals, plots from Coles )

Shape parameter Shape parameter

Conf. interval Conf. interval

Profile likelihood confidence intervals for the shape parameter  in the Block 
Maxima model. The delta method would give similar interval in the left
case, but not in the right.
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𝑥𝑝 = 𝑉𝑎𝑅𝑝(𝐿) = 𝑝-th quantile of distribution of loss L

= solution to 𝐹𝐿 𝑥𝑝 = 𝑝

𝐸𝑆𝑝 𝐿 = 𝐸 𝐿 𝐿 > 𝑉𝑎𝑅𝑝 𝐿 = Expected Shortfall

For the PoT model with threshold 𝑢 suppose that 𝑃 𝐿 > 𝑢 =
𝑝𝑢. Then 

𝑉𝐴𝑅𝑝 𝐿 =
𝜎

𝛾

1 − 𝑝

𝑝𝑢

−𝛾

− 1 + 𝑢, for 𝑝 > 𝑝𝑢

provided this value is greater than 𝑢,  and

𝐸𝑆𝑝 𝐿 = 𝑉𝐴𝑅𝑝 𝐿 +
𝜎 + 𝛾(𝑉𝐴𝑅𝑝 𝐿 − 𝑢)

1 − 𝛾
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Important exercise: Check if the formulas on the previous page 
are correct.

𝑉𝑎𝑅𝑝(𝐿) and 𝐸𝑆𝑝 𝐿 are estimated by replacing 𝜎, 𝛾 in the 

formulas on the previous page by their estimates ො𝜎, ො𝛾 and 
replacing 𝑝𝑢 by its estimate

𝑝𝑢
∗ =

# excesses of 𝑢

#observations
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Gudrun January 2005
326 MEuro loss
72 % due to forest losses  
4 times larger than second largest                         

Windstorm losses for
Länsförsäkringar 1982-2005

The real problem! 

PoT: windstorm insurance (Rootzén&
Tajvidi)



The problems 1993  - and now

How much reinsurance should LFAB buy?

Should LFAB worry about windstorm losses 
getting worse?

How should  LFAB adjust if its forest insurance 
portfolio grows?

and: 

Can detailed modeling give better risk estimates?

Are windstorms becoming more frequent?
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1994 PoT analysis of 1982-1993 LFAB data (the basic method, 

more sophisticated analysis of 1982-2005 data in later paper)

conditional probability that a 
loss in excess of the reinsurance
level 850 MSEK exceeds x

Risk 

(MSEK) 

next 

year 

next 5 

years 

next 15 

years 

10%   66   215   473 

  1% 366 1149 2497 
 

𝑋𝑖 ~ GP 𝑦 ; 𝜎𝑡 , 𝛾 ,
𝑢 = 0.9

𝜎𝑡 = exp( 𝛼 + 𝛽𝑡)
ො𝛼 = 0.93
መ𝛽 = .013 ± .013
no evidence of trend in
extremes

Gudrun: 2912 MSEK, 12 years
later

Windstorms of 1902 and 1969 probably comparable to Gudrun
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Choice of threshold/number of order statistics 
in PoT, model diagnostics

Threshold choice compromise between low bias (= good fit of
model): requires high threshold/few order statistics, and low
variance: requires low threshold/many order statistics

• mean excess plots (high variability for heavy tails)
• median excess plots
• plots of parameter estimates as function of threshold/number 

of order statistics
• qq- and pp-plots

automatic threshold selection procedures exist, and are getting
much better, but still “optimal” threshold depends on the unknown 
underlying distribution which has to be estimated.
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Quantiles of GPD
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Quantiles of GPD
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Some conclusions

• risk cannot be summarized into one number

• extreme value statistics provide the simplest methods (but     
other methods may sometimes be needed)

• didn’t find clear trends

• meteorological data didn’t help

• don’t trust computer simulation models unless statistically

validated

• companies should develop systematic techniques for thinking 

about  “not yet seen” catastrophes 

• put contractual limits to aggregate exposure
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A step in another direction: 

catastrophe risks

BIG --- ”happens only once”

• can’t adjust and improve as experience is gained
• methods based on means, variances, central limit theory have
little meaning

• difficult to keep in mind that catastrophes can (and will!)
occur

a gamble --- find the odds of a gamble!
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