
Examples on stability of equilibrium points

Example 1. Simple strong Lyapunov function.

Example 2. Stability by Linearization
For the following system of equations �nd all equilibrium points and in-

vestigate their stability and their type by linearization.(
x0 = ln(2� y2)
y0 = exp(x)� exp(y)

1. Solution. There are two equilibrium points: x1 = (1; 1)and x2 =

(�1;�1).

The Jacobian of the right hand side is:

"
0 �2 y

�y2+2

ex �ey

#
. Its values in

x1 and x2 are A1 =

"
0 �2
e �e

#
, and A2 =

"
0 2

1=e �1=e

#
. The eigenvalues

to A1 are �1
2
e � 1

2

p
e2 � 8e;and 1

2

p
e2 � 8e � 1

2
e that are conjugate com-

plex numbers with negative real parts. Therefore we observe stable spiral

around the equilibrium point x1. The eigenvalues to A2 are , eigenvalues:
1
e

�
�1
2

p
8e+ 1� 1

2

�
; 1
e

�
1
2

p
8e+ 1� 1

2

�
, one postive and one negative. There-

fore we x2 is a saddle point and is unstable.
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Example 3.

Consider the following system of ODEs:

(
x0 = 2y

y0 = �x� (1� x2)y
:

Show the asymptotic stability of the equilibrium point in the origin and

�nd it�s domain of attraction.

Solution.
We try the test function V (x; y) = x2 +Ay2 that leads to cancellation of

mixed terms in the directional derivative Vf along trajectories:

Vf (x; y) = rV � f(x) = 2x2y + (2Ay (�x� (1� x2)y)) = 4xy � 2Axy �
2Ay2(1� x2)
Choose A = 2 to cancel inde�nite terms.V (x; y) = x2 + 2y2

Vf (x; y) = 4xy � 4xy � 4y2(1 � x2) = �4y2(1 � x2) that is not positive
for jxj � 1. Therefore the origin is a stable stationary point.
Checking the behavior of the system on the set of zeroes to Vf (x; y) inside

the stripe jxj < 1 we consider (Vf )�1 (0) = f(x; y) : y = 0; jxj < 1g. On this
set y0 = �x and the only invariant set in (Vf )�1 (0) is the origin. The LaSalle
invariance principle implies that the origin is asymptotically stable.

The domain of attraction is the largest set bounded by a level set of

V (x; y) = x2 + 2y2 inside the stripe jxj � 1. The largest such set will be the
interior of the ellipse x2 + 2y2 = C such that is touches the lines x = �1.
Taking points (�1; 0) we conclude that 1 = C and the boundary of the region
(domain) of attraction is the ellipse x2 + 2y2 = 1 with halfs of axes 1 andp
0:5 :
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How to �nd a Lyapunov function?

If the right hand side of the equation is a higher degree polynomial, then

it is often convenient to �nd a Lyapunov�s function in a systematic way in

the form of polynomial with unknown coe¢ cients and unknown even degrees

like 2m.

Consider the system

x0 = �3x3 � y
y0 = x5 � 2y3

Try a test function V (x; y) = ax2m + by2n, a; b > 0.

Vf (x; y) = rV � f(x; y) =
= a2m(x)2m�1 �

�
�3x3 � y

�
+ b2n(y)2n�1

�
x5 � 2y3

�
= �6amx2m+2| {z }�

good<0

2ma(x)2m�1y| {z }
bad�indefinite

+ 2nby2n�1x5| {z }
bad�indefinite

�4nby2n+2| {z }
good<0

We choose �rst powers m and n so that inde�nit terms would have same

powers of x and y.

2m� 1 = 5;=) m = 3

2n� 1 = 1;=) n = 1

Then Vf (x; y) = �18ax8 � 6x5y + 2bx5y � 4nby4:We choose a = 1 and

b = 3 to cancel inde�nite terms. Then

V (x; y) = x6 + 3y2

Vf (x; y) = �18x8 � 12y4 < 0; (x; y) 6= (0; 0)
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Therefore V is a strong Lyapunov�s function in the whole plane and the

equilibrium is a globally asymptotically stable equilibrium point, because

V (x; y) = x6 + 3y2 !1 as k(x; y)k ! 1.
�
Example 4. Investigate stability of the equilibrium point in the origin

for the following system:

x0 = �y � x3

y0 = x5

We try our simplest choice of the Lyapunov function: V (x; y) = x2 + y2 and

arrive to

Vf (x; y) = �2xy � 2x4 + 2yx5

It does not work because the expression Vf (x; y) includes two inde�nite terms:

2xy and 2yx5 that change sign around the origin. We try a more �exible

expression by looking on particular expressions in the right hand side of the

equation: V (x; y) = x6 + �y2 where @V=@x = 6x5 with the same power of x

as in the equation, and the parameter � that can be adjusted later. V is a

positive de�nite function: V (0) = 0 and V (z) > 0 for z 6= 0.The level sets
to V look as �attened in y - direction ellipses. The curve x6 + 3y2 = 0:5 is

depicted:
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Vf (x; y) = 6x
5(�y � x3) + 2�yx5 = �6x5y + 2�x5y � 6x8

We get again two inde�nite terms, but they are proportional and the choice

� = 3 cancels them:

Vf (x; y) = �6x8 � 0

Therefore the origin is a stable equilibrium point. Vf (x; y) = 0 on the whole

y�axis that in our "general" theory is denoted by V �1f (0).We check invariant

sets of the system on the set V �1f (0): We observe that x0 = �x3 (only this
fact is important) and y0 = 0 (it does not matter for V �1f (0) that is y�axis).
Therefore f0g is the only invariant set on the y - axis. Trajectories starting
on the y - axis go across it in all points except f0g. The LaSalle�s invariance
principle implies that all trajectories approach f0g as t tends to in�nity and
the origin is asymptotically stable.

The test function V (z)!1 as kzk ! 1. It implies that the whole plain
is a region or domain of attraction for the equilibrium point in the origin.

A very useful inequality in analysis is
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Young�s inequality
Lemma. If a; b � 0, then

ab � ap

p
+
bq

q

for every pair of numbers p; q 2 (1;1) satisfying the conjugacy relation.

1

p
+
1

q
= 1

The simplest example of Young�s inequality:

ab � 1

2

�
a2 + y2

�
Example 5.

Consider the Lienard equation: x00+x0+g(x) = 0; and investigate stability

of the equilibrium in the origin. The second order equation can be rewritten

as a system z0 = f(z):

x0 = y

y0 = �g(x)� y

where g satis�es the following hypothesis: g is continuously di¤erentialble

for jxj < k for some k > 0, xg(x) > 0; x 6= 0:
Solution.
Physically this equation is a Newton equation for a non-linear spring.

For example if g(x) = sin(x) it describes a pendulum with friction where air

resistance is proportional to velocity.

A Lyapunov function is naturally to choose as a total energy of the system:

V (x; y) =
(y)2

2
+

Z x

0

g(s)ds
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Indeed it is positive de�nite in the region 
 = f(x; y) : jxj < k g because
g(s)s > 0 in 
 according to given conditions. The directional derivative of

V along f is

Vf (x; y) = y (�g(x)� y) + g(x)y = � (y)2

V is a Lyapunov�s function, but not strong because Vf (x; y) = 0 on the

whole x - axis. Therefore V �1f (0) is the whole x - axis. Checking values of

f on V �1f (0) we observe that trajectories of the system are orthogonal to

V �1f (0) in all points on V �1f (0) except the origin. It implies that f0g is the
only invariant set on V �1f (0) that attracts all trajectorie starting in a small

neighborhood of the origin. Therefore the origin is asymptotically stable.

Our next problem is to �nd a possibly large domain or region of attraction

for the equilibrium point.If we �nd a closed level set for V in 
, it will be a

boundary for a domain of attraction. It will might not be the largest possible

and depends on a clever choice of Lyapunov�s function V .

We cannot solve this problem for a general expression V (x; y) = (y)2

2
+R x

0
g(s)ds.
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Example 6.
Find all equilibriums, investigate their stability properties and �nd pos-

sible regions of attraction.

Choose a particular g(x) = x+ x2 in the previous example.

x0 = y

y0 = �(x+ x2)� y

Observe that the system has two equilibrium points: (�1; 0) and (0; 0)

Linearization gives Jacoby matrixA(x; y) =

"
0 1

�1� 2x �1

#
;A(�1; 0) ="

0 1

1 �1

#
Observe that det

"
0 1

1 �1

#
= 0 � 1 = �1 < 0 it implies by the

Grobman - Hartman theorem, that (�1; 0) is a saddle point.

A(0; 0) =

"
0 1

�1 �1

#
, det

"
0 1

�1 �1

#
= 1 > 0, trace

"
0 1

�1 �1

#
=

�1 < 0;
(traceA(0; 0))2 =4 = 1=4 < 1 = detA(0; 0). It imples that the origin is an

asymptotically stable focus for the linearized system and is asymptotically

stable for the original system.

1.250-1.25

6

4

2

0

x

y

x

y

g(x) = x+ x2

We can �nd an explicit expression for the Lyapunov�s function V (x; y) =
(y)2

2
+
R x
0
g(s)ds.
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V (x; y) =
(x)2

2
+
(x)3

3
+
(y)2

2

This function is positive de�nite on the set 
 =
�
(y)2 > � (x)2 � 2

3
(x)3

	
The level set 1

2
y2 + 1

2
x2 + 1

3
x3 = 1

6
is depicted by the red line.

The level set 1
2
y2 + 1

2
x2 + 1

3
x3 = 0 is depicted by the blue line. We will

investigate them analytically a bit later.

Vf (x; y) = rV (x; y) � f = xy + (x)2 y � (y)2 � xy � (x)2 y = � (y)2 � 0
valid in the whole plane R2:
We check which invariant sets are contained in V �1f (0) on 
 that is a part

of x - axis f(x; 0) : x > �3=2g that is a thick black line on the picture above.
Notice that V �1f (0) on 
 contains two equilibrium points (�1; 0) and

(0; 0) and they both are invariant sets. We like to �nd a largest domain


 1 � 
 bounded by a part of a level set of V such that 
 1 does not include
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the point (�1; 0). Then 
 1 contains only one invariant set that is the origin

(0; 0). This set 
 1 is the domain of attraction for the asymptotically stable

equilibrium in (0; 0).

Such largest level set of V must go through the second equilibrium point

(�1; 0) and it�s value there is V (x; y) = V (�1; 0) = 1=6. The domain of

attraction 
� is the egg - shaped domain bounded by the closed curve (y)2 =

1=3�
�
(x)2 + 2

3
(x)3

�
or as a union of two explicit branches:

y = �

s
1=3�

�
(x)2 +

2

3
(x)3

�
It is a part of the red level set on the picture. To see that this curve is closed

we consider derivative of the function
d
dx

�
1=3�

�
(x)2 + 2

3
(x)3

��
= �2x� 2x2 = (�2)x (x+ 1). It implies that

the functions has a maximum in x = 0, and minimum at x = �1. V (x) has
zero in x = �1 and another zero in x = 1=2:
1=3�

�
(x)2 + 2

3
(x)3

���
x=1=2

= 1=3�
�
(1=2)2 + 2

3
(1=2)3

�
= 1=3�

�
(1=4) + 1

3
(1=4)

�
=

1=3� 1=3 = 0;
�
One can try to �nd an even larger region of attraction 
�� for the equi-

librium point in the origin. It cannot include the equilibrium in (�1; 0)
because it is unstable (a saddle point). We can extend 
1 to a rectangle

[�1; 0] �
�
0;
p
3=3
�
in the second quadrant by checking signs of x0 and y0 on

it�s left and upper sides. Actual region of attraction is even a bit larger as

one can see on the phase portrait
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Example 7. Exercise 5.13 from L.R.
Investigate stability of the equilibrium point in the origin and �nd a

possible domain of attraction for the following system.

x01 = �x2(1 + x1x2)
x02 = 2x1

We try choose the Lyapunov function V as

V (x1; z2) = 2x
2
1 + x

2
2

We could try �rst a function V (x1; x2) = ax21 + x
2
2, check Vf and then
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decide which value a suites best.

Vf (x1; x2) = rV � f(x1; x2) = �2ax1x2(1 + x1x2) + 2x22x1
= 4x1x2 � 2ax1x2 � 2ax21x22 = �2ax21x22 � 0

for a = 2

We conclude that the equilibriom 0 is stable. Vf (x1; x2) = �2ax21x22 = 0
on both coordinate axes. We check which invariant sets are contained in

V �1f (0).

If x1 = 0, then x01 = �x2, x02 = 0. Therefore only f0g is an invariant set
on the x2 axis.

If x2 = 0, then x01 = 0, x
0
2 = 2x1. Therefore only f0g is an invariant set

on the x1 axis.

Trajectories '(t; �) starting inside ellipses V (x1; z2) = 2x21 + x
2
2 = C >0

are contained inside these ellipses because rV � f(x) � 0. It implies that

their positive orbits O+(�) are bounded and have compact closure in R2:
It implies according to the LaSalle�s theorem that all these solutions

'(t; �) approach the maximal invariant set in V �1f (0) that in our partic-

ular case consists of just one point (0; 0). Therefore the equilibrium point in

the origin is asymptotically stable. It is also globally stable because the Lya-

punov function V (x) tends to in�nity as kxk ! 1 , making that arbitrary

large elliptic discs from the family 2x21 + x
2
2 < C are regions of attraction.

�

Example 8. This example demonstrates how to use Cauchy and
Young inequalities for estimating Vf (x; y)

Two following inequalities are convenient to estimate absolute value of

"bad" inde�nite terms like xy, x3y2, xy2, et.c.
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Cauchy inequality:

jxj jyj � 1

2

�
x2 + y2

�
Young inequality If a; b � 0, then

ab � ap

p
+
bq

q

for every pair of numbers p; q 2 (1;1) satisfying the conjugacy relation.

1

p
+
1

q
= 1

The Cauchy inequality is the simplest example example of Young�s in-

equality for p = q = 2.

Consider the following system of ODE:

(
x0 = �x� 2y + xy2

y0 = 3x� 3y + y3
.

Show asymptotic stability of the equilibrium point in the origin and �nd

the region of attraction for that.

Hint: applying Lyapunovs theorem, use the Cauchy inequality 2xy �
(x2 + y2) to estimate inde�nite terms with xy: (4p)
Solution. Choose a test function V (x; y) = 1

2
(x2 + y2)

Vf = x(�x� 2y + xy2) + y (3x� 3y + y3) = xy � x2 � 3y2 + y4 + x2y2

= �x2 (1� y2)� y2 (3� y2) + xy � 0 ?????

We apply the Cauchy inequality jxj jyj � 1
2
(x2 + y2) to the last term and

collecting terms with x2 and y2 arrive to the estimate

Vf � �x2 (0:5� y2)� y2 (2:5� y2)
It implies that Vf (x; y) < 0 for (x; y) 6= (0; 0) and jyj < 1=

p
2.Therefore

the Lyapunov function is strong and the origin is asymptotically stable.

The attracting region is bounded by the largest level set of V - a circle

having the center in the origin that �ts to the domain jyj < 1=
p
2, namely

(x2 + y2) < 1=2.

Another more clever choice of a test function is V (x; y) = 3x2 + 2y2:
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Vf = 6x(�x� 2y+ xy2) + 4y(3x� 3y+ y3) = 4y4� 12y2� 6x2+6x2y2 =
�4y2 (3� y2)� 6x2 (1� y2) < 0
for jyj < 1, therefore the ellipse 3x2 + 2y2 < 2 is a domain of attraction

for the asymptotically stable equilibrium in the origin.

One can also observe the asymptotic stability of the origin by linearization

with variational matrix

A =

"
�1 �2
3 �3

#
, with characteristic polynomial: �2 + 4� + 9 = 0,

and calculating eigenvalues: �i
p
5 � 2; i

p
5 � 2 with Re� < 0. But the

linearization gives no information about the region of attraction.�
Example 9 (on instability)
Consider the following system of ODEs. Prove the instability of the

equilibrium point in the origin, of the following system(
x0 = x5 + y3

y0 = x3 � y5
(4p)

using the test function V (x; y) = x4 � y4 and Lyapunov�s instability
theorem.

Solution.

Denoting f(x; y) =

"
x5 + y3

x3 � y5

#
, consider how the function V (x; y) =

x4 � y4changes along trajectories of the system.

Vx(x; y) = f(x; y) � rV (x; y) =
"
x5 + y3

x3 � y5

#
�
"
4x3

�4y3

#
=

x54x3 + y34x3 � x34y3 + y54y3 = x54x3 + y54y3 = 4(x8 + y8) > 0:
Point out that the function V (x; y) = x4 � y4 is positive in the cone

jyj < jxj or simply along the line y = x=2, arbitrarily close to the origin. It
implies according to the instability theorem, that the origin is an unstable

equilibrium.�

How to �nd a strong Lyapunov�s function?

Example 10.
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It is theoretically possible to �nd a strong Lyapunov function for the same

system as in the Example 3.

Looking on the previous week Lyapunovs function x6 + 3y2 we see that

it�s "weekness" followed from the fact that both level sets of V and velocities

of the system were orthogonal to the y - axis. It implied that Vf (z) = 0

on the y - axis. To go around this problem a strong Lyapunov function

must have level sets that deviate slightly from the normal to the y - axis.

Adding a relatively small inde�nite term xy3 to the function x6 + 3y2 we

get this e¤ect. A level set corresponding x6 + xy3 + 3y2 = 0:7 of this new

Lyapunovs function looks as a slightly rotated version of level sets for the

previous (weak) Lyapunovs function.

Why like that ? Take a simpler example with an ellipse curve x2+2y2 = 1

and another that is x2 + xy + 2y2 = 1

This quadratic form is positive de�nite: the matrix is

"
1 0:5

0:5 2

#
:A

quadratic form xTAx = Q(x) with x = [x; y]T is positive de�nite if and only

if det A > 0 and all submatrices Ai from the upper left corner have positive

determinants: detAi > 0:

Level sets of the positive de�nite quadratic form with mixed tems like

x2+xy+2y2 are ellipses with symmetry axes (that are orthogonal eigenvectors

to A) and are rotated with respect to coordinate axes:
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We try to introduce the test function V (x; y) = x6 + xy3 + 3y2 with an

inde�nite mixed term xy3 added, that would similarly with the ellipses, give

slightly rotated level sets so that trajectories would cross them strictly inside

on the y - axis:
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We claim that the test function V (x; y) = x6 + xy3 + 3y2 is positive

de�nite and is a strong Lyapunovs function namely that Vf (x; y) < 0 for

(x; y) 6= (0; 0).
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Because of the geometry of the vector �eld f of our equation z0 = f(z)

velocities on the y axis cross such level sets strictly towards inside, implying

the desired strict inequality Vf (z) < 0; z 6= 0 on the y axis. We need to

check that V (x; y) = x6 + xy3 + 3y2 is positive de�nite (it is not trivial) and

to show that Vf (z) < 0; z 6= 0 for all z 2 R2 (it requires some non-trivial
analysis).
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