
List of notions, methods, theorems and typical problems to examination in ODE and Mathematical 

Modeling MMG511/TMV162, year 2022. 

References are given to pages in the course book by Logemann and Ryan. 

           One must know:  

• definitions to all notions, 

•  all formulations of the theorems from the list,  

• must be able to prove theorems marked by green (or grey in black-white version), 

• must be able to solve problems of the types mentioned in the list and to make conclusions from the theory. 

Topics, definitions and notions Methods, theorems, lemmas and 
corollaries 

Typical problems  

Preliminary notions form linear algebra and analysis 
Vector space, normed vector space, norm of a matrix. 
Cauchy sequence. Complete vector space (Banach space) 
Compact sets i 𝑅𝑛. Continuous functions.  
Uniform convergence in the space of continuous functions. 

Background results from analysis 
• Space C(I) of continuous functions on a 

compact I is a Banach space Example A.14, 
p. 272 
• Bolzano-Weierstrass theorem. Theorem 

A.16, p. 273 
Weierstrass criterion on uniform 
convergence of functional series. Corollary 
A23 ,p. 277 
 

 

Introduction 1.2 
Initial value problem (I.V.P.), p.13  
existence, uniqueness,  
Maximal solution. p. 13 
Integral form of I.V.P. pp.16-17  
Classification of ODEs: order, autonomous, non -
autonomous, linear, non-linear 

Elementary Examples 1.1-1.2, pp. 13-14 on 
existence, uniqueness, maximal existence 
time for solutions showing a blow up, global 
solutions p.15  
Elementary solution methods for 1-
dimensional ODEs of first order:  
linear ODEs pp.18-19, Ex. 1.5 
ODEs with separable variables p. 15, Ex. 1.3 
 

Solve an ODE with 
separate variables or a 
linear ODE of first order. 
Find maximal existence 
time interval for an 
explicit solution.  

   

LINEAR SYSTEMS 

Topics, definitions and notions Methods, theorems, lemmas and corollaries Typical problems  

Preliminary notions form linear 
algebra 
Vector space, normed vector space, 
norm of a matrix. 
 
General linear systems §2.1 
x’=A(t)x 
 

Transition matrix function  (t,) 
 §2.1.1 

Solution space, p.30. 
Transition matrix function 
 

A background result from analysis 
Weierstrass criterion on uniform convergence of 
functional series. Corollary A23 ,p. 277 
Transition matrix function and fundamental matrix 
solutions and their properties.  

• The construction of transition matrix function (t, ). 

Lemma 2.1, p.24 
• Gronwall’s inequality, Lemma 2.4, p. 27 

• A simple version of Gronwall’s inequality, after lecture 

notes.  More difficult one is Lemma 2.4 , p. 27 in the 
course book. 
 
Uniqueness of solutions to I.V.P. of linear ODE. Th. 2.5, 
p.28 (we used only a simple version of Grönwall 
inequality on lectures, with constant under the integral 
by taking max of ‖𝐴(𝑠)‖ under the integral. 
 We used the same argument  for autonomous ODE 
that was studied in lectures earlier, that is Corollary 
2.9, p.34, in the book. 
• Group properties of the transition matrix function. 

Corollary 2.6, p.29 
• On the dimension of the space of solutions to a 

linear system of ODEs. Prop. 2.7 statements (1) and 
(3), p.30. 

Find principle matrix solution for a simple system of 
ODE that can be solved explicitly (for example with 
triangular matrix) 
 

§2.1.3 Linear system of ODE with 
constant matrix (autonomous systems) 
x’=Ax 
Matrix norm, formula A.10, A.11, p. 278  
Linear change of variables in ODE. 
Matrices  𝐵 = 𝑃−1𝐴𝑃 and A are called 
similar 
Polynom  P(A), exponent exp(A) and 
logarithm log(A) of a matrix A. 
Arbitrary functions of matrices 
 
Diagonalizable matrices,  

Preliminary properties of block matrices and similar 

matrices.                                                                                   

• Polynomial of block diagonal matrices.                          • 

Determinant and eigenvalues of block triangular 

matrices.                                                                                  

• For two similar matrices A and 𝐽 = 𝑇−1𝐴𝑇 

determinant, characteristic polynomial, eigenvalues, 

and trace Tr(A) are the same.  

Typical problems for linear autonomous systems  
  Find general solution or solve I.V.P. for a linear 
autonomous system of ODE with constant matrix in 
case when eigenvalues are given or are easy to 
calculate (use Theorem 2.11, p.35   
and hints in the exercises on the homepage)  
  Solve a non - homogeneous linear system of ODEs  

𝑥′(𝑡) = 𝐴𝑥 + 𝑏(𝑡) 
using Duhamel’s formula in Corollary 2.17 p.43   

𝑥(𝑡) = 𝑒𝐴(𝑡−𝜏)𝑥(𝜏) + ∫ 𝑒𝐴(𝑡−𝜎) 𝑏(𝜎)𝑑𝜎
𝑡

𝜏

 



Block diagonal matrices.   
Algebraic and geometric multiplicity of 
eigenvalues pp. 268-269 
Generalized eigenspaces and 
generalized eigenvectors p. 267 
Chains of eigenvectors (see lecture 
notes) 
Jordan canonical form of matrix J , p. 
268 
Jordan block:  p. 268 
Jordan canonical form of a matrix. 
Transformation leading to the Jordan 
canonical form J of matrices:  
T^(-1)AT=J, A=TJT^(-1).  
 

•  Property of matrix norm:||AB||<=||A||||B||,   

A.12,  p. 279                                                                            • 

Properties of exp(A), Lemma 2.10, without (2) p.34, in 

particular: for two commuting matrices: AB=BA it 

follows that exp(A+B)=exp(A)exp(B)                                   

• Functions of two similar matrices A ans B are 

expressed explicitly by each other for example: for 

B=TAT^(-1); exp(B)=Texp(A)T^(-1), see p. 62 - in the 

proofs to Th, 2.19 and 2.29, pp. 60 and 62, 

•  The solution for linear systems of ODE with constant 

matrix and initial condition 𝑥(𝜏) = 𝜉 is: 
 𝑥(𝑡) = exp ((𝑡 − 𝜏)𝐴𝜉. 
• A simple version of Gronwall’s inequality with 

constant coefficient under the integral, and uniqueness 
of solutions to I.V.P. for linear autonomous ODE. 
Corollary 2.9, p. 34. We use a similar proof for the Th. 
2.5, p. 28. in lecture notes  
• Theorem A.8, p.268 on generalized eigenspaces and 

basis of eigenvectors and generalized eigenvectors. 
•  Method to find a basis of generalized eigenvectors. 

• Theorem A.9, p.268 on Jordan canonical form of a 

matrix. 
• Connection J=T^(-1)AT between a matrix A and its 

Jordan canonical form J in terms of eigenvectors and 
generalized eigenvectors to A. See lecture notes. 
• Number of blocks in the Jordan form of matrix is 

equal to the number of linearly independent 
eigenvectors. 
• Structure of the general solution to linear ODE with 

constant coefficients: Theorem 2.11, p.35  
• Function of a Jordan block: formula. (2.47), p.61, - two 

important particular cases are: the f(J)=exp(J) and 
f(J)=log(J); exponential function and for logarithm – see 
lecture notes. 
• Corollary 2.13, p. 36 on stability and asymptotic 

stability of solutions to linear autonomous systems of 
ODEs. One must be able to prove that conditions in the 
theorem are sufficient.  
 A proof based on Jordans normal form is given in 
lecture notes. 
We considered only the  Corollary 2.13 because of the 
more transparent formulation of the Corollary 
comparing with the Theorem 2.12 that was not 
considered. 
• Classification of phase portraits in plane for linear 

systems with constant matrix, see the link on the 
homepage and lecture notes.  
• Variation of constant (Duhamel’s) formula in 

Corollary 2.17, p.43 for non - homogeneous linear 
systems with constant matrix 
 

  Decide if a vector valued function can be solution to 
a linear system of ODEs just by checking it´s 
structure. 
Find a basis of generalized eigenvectors to a matrix.   
Use Theorem 2.11 to find if all solutions to a 
particular linear autonomous system that are 
bounded or tend to zero with t tending to plus 
infinity. 
  Use general solution to a linear autonomous system 
to find for which initial data solutions are bounded 
or tend to zero with t going to plus infinity. 
  Compute exponent of a 2x2 matrix  or a block 
diagonal matrix with eigenvalues that are easy to 
guess.      
Compute exponent of an arbitrary Jordan matrix. 
 Consider a 2- dimensional linear system in plane: 
classify and draw a sketch of phase portrait. 
 

Linear systems with periodic 
coefficients.  
Logarithm and principal value of 
logarithm for complex numbers. 
log(z)=log(|z|)+iArg(z) 
(meaning natural logarithm here)  
Logarithm and principal logarithm of a 
matrix. p. 52 
Monodromy matrix - the notion is not 
used in the book, but is introduced 

without this name as (p,0) value of 

the transition matrix (t, ) in Floquet 
theory for linear systems with periodic 
matrix A(t+p)=A(t). 
Floquet (characteristic) multipliers are 
eigenvalues to the monodromy matrix 

(p,0): Definition p. 48 
 

• Transition matrix of periodic linear system with period 

p is p- shift invariant:  Formulas 2.31, 2.32, p.45 
• Proposition 2.20 on existence of periodic solutions to 

a periodic linear system 
• Connection between the logarithm of a matrix and 

the logarithm of its Jordan canonical form. 
• Formula for logarithm of a Jordan block.  

• Existence of principal logarithm of a non-degenerate 

matrix - Proposition 2.29. p.53. 
• Floquet representation of transfer matrix for 

periodic systems in Theorem 2.30, p.53.  
 
• Floquet Theorem 2.31 on the connection between 

the absolute values of Floquet multipliers and the 
boundedness and the zero limit of solutions to periodic 
linear systems. p. 54  
• Corollary 2.33, p 59 on a criterion for existence of 

unbounded solutions to a periodic linear system. 

•  Spectral mapping Theorem 2.19, p. 44, essentially in 

the case f(x)=exp(x) giving the connection between 
characteristic multipliers and eigenvalues to the 
logarithm of the monodromy matrix. 

Find a monodromy matrix for a simple equation that 
can be solved explicitly. 
Find if a periodic linear system has periodic solutions. 
Calculate Floquet multipliers for systems with 
separable variables where the transition matrix and 
the monodromy matrix can be calculated explicitely. 
Decide if solutions to such a system all tend to zero 
or stay bounded. 
Find using Corollary 2.33 if a periodic linear system 
has unbounded solutions. 
 



 

 

 

 

NONLINEAR SYSTEMS 

Topics, notions, definitions Methods, theorems, lemmas and corollaries Typical problems 

Background notions from analysis 
Metric and normed vector spaces, pp.269-270  
Cauchy sequence. P. 270 
complete space, Banach space: p.270 
Open, closed, compact, connected sets p.270 
Bounded, compact, precompact sets, p. 270  
Space C(I) of continuous functions on a 
compact I. Uniform convergence p.273 
Fixed point theorems  
Fixed point of an operator. 
Contraction map. p.278 in Th. A.25 
Sequence of iterations,  p. 278 in the proof of 
Theorem A.25 

Background results from analysis 
• Space C(I) of continuous functions on a compact I is 

a Banach space. Example A.14, p. 272 
• Bolzano-Weierstrass theorem Theorem A.16, p. 273 

• Banach’s contraction mapping principle. Theorem 

A.25, p.277 
 

Exercises on contraction principle.  
Show that an operator is a contraction in C(I). 
Show using the Banach contraction principle that 
a given operator has a fixed point in some ball. 

  Local existence and uniqueness theory for 
Initial Value Problem (IVP) 
Integral form of IVP, p. 102, p. 119 
extension of solution, p. 106 
maximal solution 
Lipschitz functions: formula 4.7, p. 115 
Picard iterations, p.23 
 

Local existence and uniqueness theory 
Gronwall’s inequality Lemma 2.4, p. 27 
Lipschitz condition and uniqueness of solutions Th. 
4.17, p. 118, Th. 4.18, p. 119. 
Contraction mapping principle for existence and 
uniqueness theorem (Picard-Lindelöf theorem) 
Theorem. Th. 4.22, p.122, Steps 1 and 2 of the proof. 
Picard iterations (p. 23) 

Identify Lipschitz functions of several variables. 
Use Gronwall inequality to estimate difference 
between solutions to an ODE  with different 
initial data on a finite time interval. 
Write explicitly 2-3 Picard iterations (p. 23) for 
an equation. Find conditions for convergence of 
Picard iterations for a particular equation. 

Extension (continuation) of solutions and 
maximal interval of existence. §4.2 
Continuation (extensibility) of solution 
Maximal existence interval , p. 106 
maximal solution, p. 106 
Global solution  

Nonlinear systems of ODE, Maximal solution. 
Existence of maximal solutions. Th. 4.8, p.108 
Extensibility to a boundary point of the existence 
interval.  Lemma 4.9, p. 110;   
Cor. 4.10, p. 111. On the size of the maximal interval  
Th. 4.11, p. 112 on possible limits and maximal 
existence intervals for maximal solutions 
Th. 4.25, p. 125 on possible limits and maximal 
existence intervals for maximal solutions 
Prop. 4.12, p.114, on “infinite” extensibility of 
solutions for ODE with linear bound on the right 
hand side. 

Investigate if an ODE has global solutions. 
Decide for solutions, starting in a certain domain 
how long they can be extended and which limits 
they might have for time going to infinity.  
For example  
Examples 1.2 p. 14, 4.33 on the page 139  
example 4.5, 4.6, 4.7 on pages 107-108 

   

Transition map. 
Transition property 
 Transition map or flow, for autonomous 
systems – translation property. 
 

Transition map (dynamical system)  
Translation property,  (Chapman Kolmogorov 
formula for non-linear systems) Theorem 4.26, pp. 
126-127 
The openness of the domain and continuity of 
transition map. 
Theorem 4.29, Lemma 4.30, p. 129 

 

   

Autonomous systems 
Limit sets and invariant sets. 
Positive, negative semi-orbits  p. 141  
to a flow (dynamical system). 

 -limit point and  limit point, p. 142 

 -limit sets and  limit sets, p. 142 
Positively invariant, negatively invariant sets,  
p. 142. 

Properties of limit sets.  

Properties of limit sets:  -limit sets are connected  
invariant sets Th. 4.38, p.143 
 

Find an omega (positively) invariant set with 
desired properties for an ODE. 
Using test functions to identify positively - 
invariant sets to an ODE 

Periodic solutions to autonomous systems in 
the plane  

Equilibrium (critical) points, p.145 
periodic points, periodic orbits, non-periodic 
orbits, p. 146 
Limit cycles are limit sets that are periodic 
orbits.  
  
 

Poincare - Bendixson theorem 4.46, p. 151 (without 
proof).: “A limit set of a solution in a compact 
positively invariant set without fixed points is a 
periodic orbit” 
 Bendixsons criterium for the non-existence of 
periodic solutions: div(f) >0 or div(f)<0 in a simply 
connected domain U - without holes (after lecture 
notes on the home page) 
First integrals and periodic orbits. §4.7.2 
Prop. 4.54, p. 161: level sets of  first integrals in the 
plane that are closed curves are periodic orbits. 

Prove that an ODE has at least one periodic 
solution by Poincare Bendixson theorem. 
 
Prove that an ODE in plane does not have 
periodic solutions in a domain using Bendixson’s 
negative criterion 
 
 

Stability of equilibrium points of nonlinear 
systems. Chapter 4. 

Stability of equilibrium points of nonlinear systems.  
Stability of autonomous non-linear ODEs by 
linearization with Hurwitz variational matrix. 

Show stability of a fixed point using Theorem 
5.27, Corollary 5.29 about linearization with 
Hurwitz variational matrix 



Definitions of stable and asymptotically stable 
equilibrium points. Definition 5.1, p. 169 
Def. 5.14, p.182. 
Stability by linearization 
Linearization of ODE. § 5.6, p.194 
 

Th. 5.27, p.193 and Corollary 5.29, p. 195. 
(the proof given on the lecture uses the Gronwall 
inequality and is available at the homepage).  
Grobman-Hartman theorem: solutions to a nonlinear 
system and its linearization around an equilibrium 
point are “equivalent” if all real parts of eigenvalues 
to the variational matrix are non zero   (lecture notes 
on the homepage without proof) 

Investigate stability of a fixed point using the 
Grobman- Hartman theorem about linearization. 

Stability of fixed points by the method with 
Lyapunov functions. 
 
Lyapunov function, V(0)=0, V(x)>0 for x not 0 
V_f <=0 
strict Lyapunov function: the same but  
𝑉𝑓(𝑥) < 0 for x not 0 

Stability of equilibrium points to autonomous ODE 
by Lyapunovs functions: Theorem 5.2, p. 170 
A constructive variant of the proof is available in 
lecture notes. 
Students are free to choose any variant of the proof 
to Th. 5.2 at the exam. 
Instability of fixed points to autonomous ODE by 
Lyapunovs method: Th. 5.7, p. 174 
A constructive variant of the proof to a slightly 
weaker theorem is available on the home page. 

Show stability (asymptotic stability) of a fixed 
point of an ODE  by Lyapunovs method. 
Show instability of a fixed point of an ODE  by 
Lyapunovs method. 

Invariance principles.  
Domain of attraction, Def. 5.19 p. 186 
Globally attractive equilibrium Def. 5.21, 
p.187 

 Invariance principles.  
LaSalle's invariance principle  Th.5.12, p.180; 
Proof in Exercise 5.9 on page 312 
 
Asymptotic stability by "weak" Lyapunov's functon 
using Krasovsky-La Salle theorem. Th. 5.15, p. 183 
 

  
Apply  -LaSalles invariance principle  to show 
asymptotic stability of a fixed point using a 
“weak” Lyapunov function. 
Find a domain of attraction for an asymptotically 
stable equilibrium point. 
Typical problems in the book are:  
Example 5.13, p. 181, 
Exercises 5.7, 5.8 ,  p. 182 

 


