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Exercises on general linear ODE

1. Show that (A(t)B(t))0 = A0(t)B(t) + A(t)B0(t) for n� n matrices A(t) and B(t) with di¤erentiable
elements.
2. Show that det(exp(A)) = exp(trA) for any constant matrix A:
3. If t 7�! 	(t) is a fundamental matrix solution for the system x0 = A(t)x, x 2 Rn. It means that

	0(t) = A(t)	(t):
Then the matrix valued function �(t; �) = 	(t)	�1(�) is called the transition matrix function: it is a

fundamental matrix solution with respect to the variable t for each � such that �(� ; �) = I. It implies
that the solution x(t) to I.V.P.

x0 = A(t)x; x(�) = �

with initial data � at the time � is given by the expression:

x(t) = �(t; �)�

The matrix �(t; �) satis�es Chapman-Kolmogorov identities:

�(t; s)�(s; �) = �(t; �)

(semigroup property) and

��1(t; s) = �(s; t);
@�(t; s)

@s
= ��(t; s)A(s)

Prove these statements.
4. Calculate the transition matrix function �(t; s) for the system of equations�

x01 = t x1
x02 = x1 + t x2

5. Calculate the transition matrix function �(t; s) for the system of equations�
x01 = x1 + tx2
x02 = 2x2

6. Suppose that every solution of x0 = A(t)x is bounded for t � 0 and let 	(t) be a fundamental matrix
solution. Prove that 	�1(t) is bounded for t � 0 if and only if the function t !

R t
0
trA(s)ds is bounded

from below. Hint: The inverse of a matrix is the adjugate of the matrix divided by its determinant. See:
http://en.wikipedia.org/wiki/Adjugate_matrix
7. Suppose that the linear system x0 = A(t)x is de�ned on an open interval containing the origin whose

right-hand end point is ! � 1 and the norm of every solution has a �nite limit as t! !.
Show that there is a solution converging to zero as t! ! if and only if

R !
0
trA(s)ds = �1. Hint: Use

Abels formula and the fact that a matrix has a nontrivial kernel if and only if its determinant is zero.
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7a. Show that if lim inft!+1
R t
t0
tr(A(s))ds = +1 then the equation x0 = A(t)x has an unbounded

solution. Hint: use Abel�s formula.
8. Let A be an invertible constant matrix. Show that the only invariant lines for the linear system

x0 = Ax, x 2 R2 are the lines ax1 + bx2 = 0 where [�b; a]T is an eigenvector to A.
9. Show that for arbitrary n� n matrix A the relation det(I + "A+O("2)) = 1 + " tr (A) +O("2)
10. Consider the �ow �(t; x) corresponding to the autonomous equation y0 = f(y), y 2 Rn mapping

the domain 
 to the domain as 
t = fy = �(t; x); x 2 
g where y is the solution to the ODE y0 = f(y)
with initial data y(0) = x 2 
:
Show that d

dt
(V ol(
t)) =

R

t
div (f) dy. Hint: use the result of Ex.9.

11. Show directly that the area of a unit disk is preserved when it is transformed forward to 2 time
units by the �ow, corresponding to the system x0 = y, y0 = x. Hint: consider the system in new variables
x+ y and x� y.
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Solutions.

Solution to 3.

� �(t; s)�(s; �) = 	(t)	�1(s)	(s)	�1(�) = 	(t)	�1(�) = �(t; �).

� ��1(t; s) = (	(t)	�1(s))�1 = (	�1(s))�1 (	(t))�1 = 	(s)	�1(t) = �(s; t);

� @�(t;s)
@s

= ��(t; s)A(s)
Use the relation: d

ds
(	�1(s)) = �	�1(s) d

ds
(	(s))	�1(s)

@�(t;s)
@s

=
@(��1(s;t))

@s
=
�
���1(s; t) @

@s
(�(s; t)) ��1(s; t)

�
= ���1(s; t)A�(s; t)��1(s; t) = ���1(s; t)A =

��(t; s)A

Solution to 4.
Calculate the transition matrix function �(t; s) for the system of equations�

x01 = t x1
x02 = x1 + t x2

x0 = A(t)x

x(t) = �(t; �)�
Here the matrix A(t) is triangular.
Solution to the scalar linear equation x0 = p(t)x+ g(t) with initial data x(�) = x0 is calculated using

the primitive function P(t; �) of p(t) .

x0 = p(t)x+ g(t)

P(t; �) =

Z t

�

p(s)ds

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; s)g g(s)ds

x(�) = x0

A derivation of this formula using the integrating factor idea follows.

x0 = p(t)x+ g(t); x0 = x(�)

P(t; �) =

Z t

�

p(s)ds

exp f�P(t; �)gx0 = exp f�P(t; �)g p(t)x+ exp f�P(t; �)g g(t)
exp f�P(t; �)gx0 � p(t) exp f�P(t; �)gx = exp f�P(t; �)g g(t)
exp f�P(t; �)gx0 + (exp f�P(t; �)g)0 x = exp f�P(t; �)g g(t)

[exp f�P(t; �)gx]0 = exp f�P(t; �)g g(t)Z t

�

[exp f�P(s; �)gx(s)]0 ds =

Z t

�

exp f�P(s; �)g g(s)ds

exp f�P(t; �)gx(t)� exp f�P(� ; �)gx0 =

Z t

�

exp f�P(s; �)g g(s)ds

exp f�P(t; �)gx(t)� exp f0gx0 =

Z t

�

exp f�P(s; �)g g(s)ds
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x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; �)g exp f�P(s; �)g g(s)ds

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; �)� P(s; �)g g(s)ds

P(t; �)� P(s; �) =

Z t

�

p(z)dz �
Z s

�

p(z)dz =

Z t

�

p(z)dz +

Z �

s

p(z)dz =Z t

s

p(z)dz = P(t; s)

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; s)g g(s)ds;

x(�) = x0

The system of ODE above has triangular matrix and can be solved recursively starting from the �rst
equation.
The fundamental matrix �(t; �) sati�es the same equation, namely

d

dt
�(t; �) = A�(t; �)

�(� ; �) = I

�(t; �) has columns �1(t; �) and �2(t; �) that at the time t = � have initial values [1; 0]T and [0; 1],

because �(� ; �) = I =
�
1 0
0 1

�
:

In the equation x01 = t x1 the coe¢ cient p(t) = t, therefore P(t; �) =
R t
�
s ds =

�
1
2
s2
���t
�
= 1

2
(t2 � � 2)

and the solution x1(t) = exp(12 (t
2 � � 2))x1(�).

The second equation x02 = t x2 + x1 is similar but inhomogeneous:

x2(t) = exp(P(t; t0))x2(t0) +
Z t

t0

exp(P(t; s))x1(s)ds:

Substituting P(t; �) = 1
2
(t2 � � 2) we conclude that x2(t) = exp(12 (t

2 � � 2))x2(�)+
R t
�
exp(1

2
(t2 � s2)) exp(1

2
(s2 � � 2))x1(�)ds =

exp(1
2
(t2 � � 2))x2(�) +

R t
�
exp(1

2
(t2 � � 2))x1(�)ds

And

x2(t) = exp(
1

2

�
t2 � � 2

�
)x2(�) + exp(

1

2

�
t2 � � 2

�
)x1(�)(t� �):

The fundamental matrix solution �(t; �) has columns that are solutions to x0 = A(t)x with initial data -

that are columns in the unit matrix:
�
1
0

�
and

�
0
1

�
,

Taking x1(�) = 1 and x2(�) = 0 we get x1(t) = exp(12 (t
2 � � 2)) with x2(t) = exp(12 (t

2 � � 2))(t� �)
Taking x1(�) = 0 and x2(�) = 1 we get x1(t) = 0 with x2(t) = exp(12 (t

2 � � 2)) and the fundamental
matrix solution in the form

�(t; �) = exp(
1

2

�
t2 � � 2

�
)

�
1 0
t� � 1

�
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Solution to 5. The solution is similar to the problem 4.

x0 = p(t)x+ g(t) (1)

P(t; t0) =

Z t

t0

p(s)ds

x(t) = exp fP(t; t0)gx0 +
Z t

t0

exp fP(t; s)g g(s)ds

x(t0) = x0�
x01 = x1 + tx2
x02 = 2x2

. x0 = Ax , A =
�
1 t
0 2

�

�(t; �) = (�1(t; �); �2(t; �)):

@

@t
�1 = A�1;

@

@t
�2 = A�2

�1(� ; �) =

�
1
0

�
, �2(� ; �) =

�
0
1

�
.

We solve �rst the equation for x2(t) with initial data x2(�) :

x2(t) = x2(�) exp(2(t� �))
and then the equation for x1(t) with initial data x1(�) and substituting the solution for x2(t) =

x2(�) exp(2(t� �))into the right hand side of the equation; both accoring to the formula in (1)

x1(t) = x1(�) exp(t� �) +
Z t

�

exp(t� s) [s x2(�) exp(2(s� �))] ds

= x1(�) exp(t� �) + x2(�) exp(t� 2�)
Z t

�

exp(s)sds =�Z t

�

exp(s)sds = tet � �e� � (et � e� )
�

= x1(�) exp(t� �) + x2(�)
�
et�� � �et�� � e2(t��) + te2(t��)

�
and substitute particular initial data for �1(t; �); �2(t; �):

�(t; �) =

�
exp(t� �) exp(t� �)(1� �) + exp(2 (t� �))(t� 1)
0 exp(2(t� �))

�
Solution to 6.
Suppose that every solution of x0 = A(t)x is bounded for t � 0 and let 	(t) be a fundamental matrix

solution. Prove that 	�1(t) is bounded for t � 0 if and only if the function t !
R t
0
trA(s)ds is bounded

from below.
Hint: The inverse of a matrix is the adjugate of the matrix divided by its determinant, namely

	�1(t) = [det(	(t))]�1 [Adj(	(t))]. The adjugate Adj(B) =
� eB�T where the matrix eB is a matrix of the

same size as B with elements in eBij calculated as n � 1 dimentional determinants of the matrix B with
eliminated i-th row and j-th column times (�1)i+j. See http://en.wikipedia.org/wiki/Adjugate_matrix
The fact that all solutions to the ODE are bounded for t � 0 implies that all elements in 	(t) are

bounded for t � 0 and therefore all elements of Adj(	(t)) are bounded for t � 0 since they consist
of sums of products of bounded elements in 	(t) times �1. It implies that 	�1(t) is bounded (has
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bounded elements) for t � 0 if and only if [det(	(t))]�1 is bounded that is equivalent to that jdet(	(t))j
is bounded from below for for t � 0. Abel�s formula gives that det(	(t)) = det(	(0)) exp

�R t
0
trA(s)ds

�
and that jdet(	(t))j = jdet(	(0))j exp

�R t
0
trA(s)ds

�
> a > 0, (bounded from below) if and only if

ln (jdet(	(0))j) +
�R t

0
trA(s)ds

�
> ln a or�Z t

0

trA(s)ds

�
> ln a� ln (jdet(	(0))j)

It implies that jdet(	(t))j is bounded from below if and only if
R t
0
trA(s)ds is bounded from below for

t � 0 (cannot go to �1 with tk ! +1 for some for some sequence of times ftkg1k=1 ).
Solution to 7.
Formulation of the problem. Suppose that the linear system x0 = A(t)x is de�ned on an open

interval (a; !) containing the origin whose right-hand end point is ! � 1 and the norm of every solution
has a �nite limit as t! !.
Show that there is a solution converging to zero as t! ! if and only if

R !
0
trA(s)ds = �1.

Hint: Use Abels formula and the fact that a matrix has a nontrivial kernel if and only if its determinant
is zero.
Solution. We show �rst implication (=; that if

R !
0
trA(s)ds = �1, then there must exist a solution

converging to zero with other conditions satis�ed.
Suppose opposite, that all solutions x(t) to the system have a limit of the norm strictly positive:

lim
t!!

kx(t)k ! Cx > 0 (we remind the condition in the problem that all solutions have a limit lim
t!!

kx(t)k).
There must exist a monotone sequence ftkg1k that converges to ! : lim

k!1
tk = !; such that �(t; 0) has

a limit along this sequence of times: lim
k!1

�(tk; 0) = ��. It follows from the property that any bounded

sequence in a complete vector space must have a convergent subsequence and from the fact that columns
in �(t; 0) are uniformly bounded solutions to the ODE.
The condition that

R !
0
trA(s)ds = �1 means that lim

t!!

R t
0
trA(s)ds = �1: The Abel-Liouville formula

implies that

lim
t!!

det(�(t; 0) = det(�(0; 0)) exp

�
lim
t!!

Z t

0

trA(s)ds)

�
= 0

Therefore for the sequence ftkg1k it follows that

0 = lim
k!1

det�(tk; 0) = det lim
k!1

�(tk; 0) = det�� = 0

We conclude that the limit matrix �� has a non-trivial kernel, namely there is a vector c = [c1; c2; :::; cn]T

such that ��c = 0.
Therefore limk!1�(tk; 0)c = ��c = 0. It means that the solution x�(t) to the system x0 = A(t)x with

initial condition x�(0) = c has the property limk!1 x�(tk) = 0 (here lim
k!1

tk = !)

It contradicts to our supposition that all solutions have lim
t!!

kx(t)k ! Cx > 0:�
The implication =) in the exercise means that if there is a solution x�(t) such that limt!! x�(t) = 0

then
R !
0
trA(s)ds = �1.

Consider � = x�(0). Consider a basis fbigni=1 in Rn with b1 = �. Consider the matrixW (t) (Wronskian)
that has columns that are solutions to the system x0 = A(t)x with initial conditions fbigni=1. Then the
Abel formula for W (t) reads:

det(W (t)) = det (W (0)) exp

�Z t

0

trA(s)ds)

�
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The limit of this determinant with t tending to ! is zero

lim
t!!

det(W (t)) = 0

because the �rst column x�(t) in the Wronsky matrix W (t) tends to zero. It is possible if and only if
limt!!

R t
0
trA(s)ds =

R !
0
trA(s)ds = �1 because

0 = lim
t!!

det(W (t) = det(W (0)) exp

�
lim
t!!

Z t

0

trA(s)ds)

�
and columns in W (0) are linearly independent and therefore det (W (0)) 6= 0.�
Solution to 7a.(Corollary 2.33, p. 59)
Show that if lim inft!+1

R t
t0
tr(A(s))ds = +1 then the equation x0 = A(t)x has an unbounded solution.

Hint: use Abel�s formula.
Solution.We remind that the transfer matrix �(t; �) sati�es the initial value problem:

d

dt
�(t; �) = A(t)�(t; �)

�(� ; �) = I

Arbitrary solution to the initial problem x0(t) = A(t)x(t); x(�) = � will be expressed as

x(t) = �(t; �)�

According to Abel - Liouville�s formulaand Euler formula for complex numbers

jdet(�(t; 0) )j =
����det(�(0; 0)) exp�Z t

0

tr(A(s)ds

����� =����exp�Z t

0

tr(A(s)ds

����� =

����exp�Re�Z t

0

tr(A(s)ds

������
Therefore, if Re

�R p
0
tr(A(s)ds

�
> 0 then

jdet(�(p; 0) )j =
����exp�ReZ p

0

tr(A(s)ds

����� > 1:
On the other hand det(�(p; 0)) is a product of eigenvalues �k to the monodromy matrix �(p; 0) with
multiplicities mk (it follows from the structure of similar Jordan matrix)

jdet(�(p; 0)j =
sY
k=1

j�kj
mk > 1

To have this product greater than 1 we must have at least one eigenvalue �p with
���p�� >1. There-

fore, according to one of Floquet theorems, there is a solution x(t) that is not bounded and therefore
lim supt!1 kx(t)k =1. �
Solution to 9.
Abel�s formula for fundamental matrix solution is det(	(t)) = det(	(0)) exp

�R t
0
trA(s)ds

�
: For

det(exp(tA)) = det(I) exp
�R t

0
trAds

�
= exp (t trA)

det((I + "A) + O("2)) = det((I + "A) + O("2) � exp("A) + exp("A)) = det(exp("A) + O("2)) =
det (exp (" trA)) +O("2)
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= exp (" trA) +O("2) = 1 + " tr (A) +O("2).
One can also give a direct proof considering an expansion of det((I + "A) + O("2)) according to the

addition rool for determinants and observing that the only terms of order zero and one in " ! 0 in the
determinant are 1 and "Aii. Adding the last ones leads to " tr (A).
Solution to 10.
Consider the �ow �(t; x) corresponding to the autonomous equation y0 = f(y), y 2 Rn mapping the

domain 
 to the domain as 
t = fy = �(t; x); x 2 
g where y is the solution to the ODE y0 = f(y) with
initial data y(0) = x 2 
:
Show that d

dt
(V ol(
t)) =

R

t
div (f) dy. Hint: use the result of Ex.9.

(V ol(
t)) =
R

t
dx

Considering derivative of the integral is useful to have the integration over a �xed domain and function
under the integral depending on time. To implement this idea we introduce a change of variables such that
the domain of integration for time t coinsides with the "initial" domain 
0 and
(V ol(
t)) =

R

t
dx =

R

0

���det hD�(t;x)Dx

i��� dx
Consider this integral for t! 0.
D
Dx
�(t; x) = D

Dx
[I x+ t f(0; x) +O(t2)] =

�
I + t D

Dx
f(0; x) +O(t2)

�
; for t! 0

det
�
D
Dx
�(t; x)

�
= det

�
I + t D

Dx
f(0; x) +O(t2)

�
= 1 + t tr

�
D
Dx
f(0; x)

�
+O(t2) � 0; for t! 0

and
���det hD�(t;x)Dx

i��� = det � DDx�(t; x)�
tr
�
D
Dx
f(0; x)

�
= div (f(0; x))

d
dt
(V ol(
t)) t=0 =

R

0
div (f(0; x)) dx

The same argument works naturally for any time t.
Solution to 11.
11. Show directly that the area of a unit disk is preserved when it is transformed forward to 2 time

units by the �ow, corresponding to the system x0 = y, y0 = x. Hint: consider the system in new variables
x+ y and x� y.
Solution.
Remind �rst that the ormula for transformation of area and volume integrals under a transformation

of variables.
Let � : Rn ! Rn be a C1 mapping (havng continuous derivatives) andA � Rn, B � Rn, B = �(A):ThenZ

�(A)
f(z)dz =

Z
A
f(x) det(J(�(x))dx

where J(�(x)) is the Jacoby matrix of the mapping �.
For volume of the transformed set �(A) the formula simpli�es by inserting f(z) = 1:

V ol(�(A)) =
Z
�(A)

dz =

Z
A
jdet(J(�(x))j dx

For a linear transformation of A generated by the linear equation with the transfer matrix �(t; 0) the
Jacoby matrix for each time t is the transfer matrix itself:

J(�(x)) = �(t; 0)

and this formula for the volume of the transformed set A looks as:

V ol(�(t; 0)(A)) =

Z
�(t)(A)

dz =

Z
A

jdet(�(t; 0))j dx

Z
A

������det(
=Iz }| {

�(0; 0)) exp

�Z t

0

tr(A(s)ds

������� dx
=

Z
A

����exp�Z t

0

tr(A(s)ds

����� dx
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The particular problem here is reduced to calculating the determinant of the transfer matrix of the given
system of equations:

x0 = y;

y0 = x:

or

r0 = Ar

A =

�
0 1
1 0

�
tr(A) = 0

with constant matrix A, that simpli�es the formula for the volume even more.

V ol(�(t; 0)(A)) =

Z
A

����exp�Z t

0

[trA] ds

����� dx =
=

Z
A

jexp (t [trA] ds)j dx =
Z
A

jexp (t [trA] ds)j dx

=

Z
A

dx = V ol(A)

It shows that the transfer mapping of this system (or �ow corresponding to this system as one says in
the theory of dynamical systems) preserves volume. It implies that any disc will preserve it�s arean under
this mapping in fact at any time.
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