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Introduction to the modelling poject and to nullclines

Logistic equation and two species competition model.
Let xi(t); i = 1; 2: be populations of two species. Each of the species grows with

intrinsic growth rate ri in case when in�nite resources are available: x0i = rixi; ri > 0:

Limited resources lead to competition within the population and a limited growth rate

for the large size of the population: ri(1� xi
Ki
). This model is called the logistic equation:

x0i = rixi

�
1� xi

Ki

�
(1)

The competition between di¤erent species leads to a decrease in each population with

the decreasing rate proportional to the competitor population size: ��1x2 for the pop-
ulation x1 and ��2x1 for the population x2 with competition coe¢ cients �1 > 0 and

�2 > 0. The corresponding system of equations describes the evolution of two competing

species:

x01 = r1x1

�
1� x1

K1

�
� �1x1x2 (2)

x02 = r2x2

�
1� x2

K2

�
� �2x2x1

What are natural questions to pose about an environmental model?
1. Existence and uniqueness of solutions

2. Positivity of solutions is important for chemical and environmetal models where

variables have meaning of mass or number of individuals.

3. We look for sustainable evolutions like equilibrium points, in particular stable and

asymptotically stable equilibriums (states of coexistence), periodic solutions.

4. Find if all solutions are bounded when t!1 ?

5. Phase portrait gives a feeling of the global picture of all possible solutions for

di¤erent initial states. We would like to be able to classify qualitatively di¤erent pictures

of the phase portrait depending on combinations of parameters in the system: large or

small competition coe¢ tients �1 > 0 and �2 > 0 in comparison with r1; K1 et.c.

6. Nullclines are lines where one of the components of velocity is zero. They separate

areas where components of velocity are positie and negative.
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Example on the application of nullclines(
x0 = y

y0 = �y � x� x2
Nullclines of this system have equations y = 0 ( x - nullcline) that is the x - axis, and

y = �x� x2, that is a parabola throught points (�1; 0) and (0; 0) (y - nullcline). See the
picture.

Equilibrium points are intersection points of di¤erent nullclines: (0; 0) and (�1; 0):
Velocities on the nullclines have only one component non-zero: x - component on the

y- nullcline and y - component on the x - nullcline. Velocity vectors on nullclines are

illustrated as red and blue vectors on the sketch below.

We observe that the plane is divided by nullclines into �ve domains where components

of velocity have constant sign.

We mark these domains by abbreviations DR for down-right, DL3 for down - left in

the third quadrant, UR - for up-right, UL - for up - left and DL4 - for for the down left

in the fourth quadrant.

We sketch directions of velocities on the nullclines and taking into account directions

of velocities can make conclusions about how trajectories of solutions to the di¤erential

equation can enter and leave these domains through di¤erent parts of nullclines. It will

give us a rather rich picture of the phase protrait and can be an argument for stating

instability of one of the equilibrium points.
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The domainDR is bounded by two intervals on the x-axis: (�1;�1) and (0;1) that
are parts of the x - nullcline, and by the part of the parabola y = �x�x2 with x 2 (�1; 0)
that is part of y - nullcline. Trajectories leave this domain in the direction straight down

through the intervals (�1;�1) and (0;1) and leave it in the direction straight to the
right through the part of the parabola y = �x�x2 with x 2 (�1;�0:5):Trajectories enter
this domain in the direction straight to the right through the right through the part of

the parabola y = �x� x2 with x 2 (�0:5; 0):
The domain DL4 is bounded by the interval (0;1) on the x - axis that is a part of

the x - nullcline and by the part of the parabola y = �x�x2 with x 2 (0;1) that is part
of y - nullcline. Trajectories enter this domain through the �rst line straight down and

leave it through the second line straight to the left.

The domain UR is bounded by the part of the parabola y = �x�x2 with x 2 (�1; 0)
that is part of y - nullcline and by the interval (�1; 0) on the x - axis that is part of x -
nullcline.

Trajectories enter this domain through the part of the parabola y = �x � x2 with
x 2 (�1; 0:5) straight to the right and throught the interval (�1; 0) on the x - axis in the
direction straight up. Trajectories leave this domain throught the part of the parabola

y = �x� x2 with x 2 (�0:5; 0) in the direction straight to the right.
The domain UL is bounded by the interval (�1; 0) on the x - axis that is part of

x - nullcline and by two branches of the parabola y = �x � x2 with x 2 (0;1) and
x 2 (�1;�1):
Trajectories enter this domain through the part of the parabola y = �x � x2 with

x 2 (0;1) in the direction straight to the left. Trajectories leave this domain throught
the part of the parabola y = �x� x2 with x 2 (�1;�1) in the direction straight to the
left. Trajectories also leave this domain throught the interval (�1; 0) on the x - axis in
the direction straight up.

The domain DL3 is bounded by the interval (�1;�1) on the x - axis that is a part of x
- nullcline and by the branch of the parabola y = �x�x2 with x 2 (�1;�1):Trajectories
enter this domain throught the part of the parabola y = �x� x2 with x 2 (�1;�1) in
the direction straight to the left. Trajectories enter this domain in the direction straight

down through the interval (�1;�1).
These observations can make qualitative conclusions about behavior of trajectories in

small vicinities of equilibrium points (�1; 0) and (0; 0).
We observe looking on directions of trajectories in domains UR, DR, DL and UL that

trajectories must go in spirals around the equilibrium point (0; 0): But we can not make

the conclusion about stability or instability of the equilibrium in (0; 0):

We observe that any trajectory x(t) starting at a point � arbitrarily close to the

equilibrium point (�1; 0) inside domains UR or DL move out of the circle of radius

r = 0:25 (or smaller) still staying in the same domain. It happens so because such
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trajectory has both components of velocity strictly positive (in UR) or strictly negative

(in DL) before it leaves the circle: It implies that this equilibrium point is unstable. We

can sketch phase portrait around this equilibrium and guess that it might be a saddle

point.
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1.1 Stability of equilibrium points by linearization.

We consider in this chapter of the course properties of solutions of I.V.P to nonlinear

autonomous systems of ODEs

x0(t) = f(x(t)); x(0) = � (3)

where f : G ! RN is locally Lipschitz with respect to x. J is and interval and G � RN

is a non-empty open set.

We will consider in this chapter of the course the stability of equilibrium points x�
of such nonlinear systems (f(x�) = 0) in connection with properties of corresponding

linearized systems in the form

y0(t) = Ay(t) (4)

where A = Df
Dx
(x�) is a Jacoby matrix of the function f calculated in an equilibrium point

of interest.

De�nition. (p. 115, L.R.) A function f is called locally Lipschitz in G if for any

point y 2 G there is a neighborhood V (y) and a number L > 0 (depending on V (y)) such
that for any v; w 2 V (y)

kf(v)� f(w)k � L kv � wk

Example. Functions having continuous partial derivatives are locally Lipschitz func-
tion. (Exercise)

De�nition: A solution x(t) : I ! RN is called maximal solution to an I.V.P. if it
cannot be extended to a larger time interval.

1.2 Peano existence theorem.

The theorem by Peano, states that if f : G! RN is continuous, the the I.V.P. (3) above
has a solution (not unique!!!) for any � 2 G on some, might be small time interval (��; �).
(Theorems 4.2, p. 102; )

We will consider Peano theorem it at the end of the course.

1.3 Picard and Lindelöf�s existence and uniqueness theorem.

The theorem by Picard and Lindelöf, states that if f : G! RN is locally Lipschitz, then
the I.V.P. (3) above has a unique solution for any � 2 G on some, might be small time

interval (��; �). (Theorems 4.17, p. 118; Theorem 4.22, p.122.)

We will formulate it in a more general form and will prove it at the end of the course.
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1.4 De�nition of stable equilibrium points (repetition).

De�nition: A point x� 2 G is called an equilibrium point to the equation (3) if f(x�) = 0:
The corresponding solution x(t) � x� is called an equilibrium solution.

De�nition. (5.1, p. 169, L.R.)
The equilibrium point x� is said to be stable if, for any " > 0; there is � > 0 such that,

for any maximal solution x : I ! G to (3) such that 0 2 I and kx(0)� x�k � � we have
kx(t)� x�k � " for any t 2 I \ R+. Below a picture is given in the case x� = 0.

De�nition. (5.14, p. 182, L.R.)
The equilibrium point x� of (3) is said to be attractive if there is � > 0 such that for

every � 2 G with k� � x�k � � the following properties hold: the solution x(t) = '(t; �)
to I.V.P. with x(0) = � exists on R+and '(t; �)! x� as t!1.
De�nition. We say that the equilibrium x� is asymptotically stable if it is both

stable and attractive.

In the analysis of stability we will always choose a system of coordinates so that the

origin coincides with the equilibrium point. In the course book this agreement is applied

even in the de�nition of stability.

De�nition. The equilibrium point x� is said to be unstable if it is not stable. It

means that there is a "0 > 0; such that for any � > 0 there is point x(0) : kx(0)� x�k � �
such that for some t0 2 I we have kx(t0)� x�k > "0:(a formal negation to the de�nition
of stability)

1.5 Stability and instability of the equilibrium point in the ori-

gin for autonomous linear systems.

Origin is an equilibrium point for all linear systems of ODE. If the matrix A is degenerate

namely if det(A) = 0, there can appear lines or in higher dimensions - hyperplanes of

equilibrium points in addition to the origin, corresponding to the non-trivial kernel of the

matrix A.
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The following general statement about stability and instability of the equilibrium in

the origin for arbitrary autonomous linear systems of ODEs follow immediately from the

Corollary 2.13 in L.&R.

Theorem. (Propositions 5.23, 5.24, 5.25, pp. 189-190, L.R.)
Let A 2 CN�N be a complex matrix.
Then three following statements are valid for the system x0(t) = Ax(t)

1. The origin is asymptotically stable equilibrium point if and only if Re� < 0 for all

� 2 �(A).

2. The equilibrium point in the origin is stable if and only if Re� � 0 for all � 2
�(A) and all eigenvalues � with Re� = 0 are semisimple (the number of linearly

independent eigenvectors to � is equal to the algebraic multiplicity m(�) of �)

3. The equilibrium point in the origin is unstable if and only if there is at least one

eigenvalue � with Re� > 0 or an eigenvalue � with Re� = 0 that is not semisimple.

(3. is a direct consequence of 2. )

Proof of this theorem is a simple exrecise based on the de�nitions of stability and

asymptotic stability and on the Corollary 2.13 about the properties of kexp(At)k
and kexp(At)�k :

De�nition. Matrix A with the property Re� < 0 for all � 2 �(A) is called Hurwitz
matrix.
OBS!
We point out that the origin is an asymptotically stable equilibrtium for systems of

ODEs x0(t) = Ax(t) with Hurwitz matrix A.

One of the goals of the lecture is to show that under certain limitations on the function

h(x), h(0) = 0 the asymptotic stability of the equilibrium point in the origin for the non-

linear system

x0(t) = Ax+ h(x) (5)

x(0) = � (6)

is valid if the matrix A is Hurwitz (has all eigenalues � with Re� < 0).

1.6 Inhomogeneous linear systems of ODEs with constant coef-

�cients.

Corollary. Duhamel formula, autonomous case. (Corollary 2.17, p. 43)
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Consider the inhomogeneous system

x0(t) = Ax(t) + g(t)

with continuous or piecewise continuous function g : R! RN . Then the unique solution
to the I.V.P. with initial data

x(0) = �

is represented by the Duhamel formula:

x(t) = exp(At)� +

Z t

0

exp(A(t� �))g(�)d� (7)

Proof of the Corollary: check that the formula gives a solution and show that it is
unique.

x(t) = exp(At)� +

Z t

0

exp(A(t� �))g(�)d�

= exp(At)� + exp(At)

Z t

0

exp(�A�)g(�)d�

= exp(At)

�
� +

Z t

0

exp(�A�)g(�)d�
�

x0(t) = A exp(At)

�
� +

Z t

0

exp(�A�)g(�)d�
�
+ exp(At) exp(�At)g(t)

= Ax(t) + g(t)

for all points t where g(t) is continuous. Di¤erence z(t) = x(t) � y(t) between two
solutions x(t) and y(t) satis�es the homogeneous systems z0(t) = Az(t) and zero initial

condition z(0) = 0 and the integral equation: z(t) =
R t
0
Az(�)d�. The same reasoning as

before, using the Grönwall inequality, or just a reference to the uniqueness of solutions to

homogeneous systems implies that z � 0.

1.7 Stability of equilibrium points to linear systems perturbed

by a small right hand side.

Theorem (Theorem 5.27, p. 193, L.R.) The proof is required at the exam). Let
G � RN be a non-empty open subset with 0 2 G. Consider the nonlinear di¤erential
equation

x0(t) = Ax(t) + h(x) (8)

x(0) = � (9)
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where A 2 RN�N and h : G! RN is a continuous function satisfying

lim
z!0

h(z)

kzk = 0: (10)

If A is Hurwitz, that is Re� < 0 for all � 2 �(A), then 0 is an asymptotically stable
equilibrium of 8.

Moreover, there is � > 0 and C > 0 and � > 0 such that for k�k < � the solution

x(t) to the initial value problem with initial data

x(0) = �

exists for all t 2 R+ ad satis�es the estimate

kx(t)k � C k�k e��t

Proof. (This proof is required at the exam)
The main tool in the proof is the following integral form of the I.V.P. based on the

Duhamel formula.

x(t) = exp(At)� +

Z t

0

exp(A(t� �))h(x(�))d�

If Re� < 0 for all � 2 �(A) then there is � > 0 such that Re� < �� (strictly smaller!)
for all � 2 �(A) and

kexp(At)k � Ce��t (11)

for some constant C > 0.

We can choose " > 0 such that C" < � and using (10) choose �" such that for kzk < �",
z 2 G

kh(z)k
kzk < " (12)

kh(z)k < " kzk (13)

It follows from properties of h :limz!0
h(z)
kzk = 0:

We know from Peano theorem that the solution to the equation (8) exists on some

time interval t 2 [0; �) (another �!!!)
We apply Duhamel formula (7) for solutions to the equation of interest (8):

x(t) = exp(At)� +

Z t

0

exp(A(t� �))h(x(�))d�
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As long as x(�) under the integral, belongs to the ball fx : kxk < �"g � G, we apply the

triangle inequality for integrals and estimates (11) and (12):

kx(t)k � kexp(At)k k�k+
Z t

0

kexp(A(t� �))k kh(x(�))k d�

kx(t)k � Ce��t k�k+
Z t

0

Ce��(t��)" kx(�)k d�

Ce��t k�k+ e��t
Z t

0

C"e�(�) kx(�)k d�

Introduce the function y(t) = kx(t)k e�t. Then multiplying the last inequality by e�t

kx(t)k e�t � C k�k+
Z t

0

C"
�
kx(�)k e�(�)

�
d�

we arrive to

y(t) � C k�k+
Z t

0

(C") y(�)d�

The Grönwall inequality implies that

ky(t)k � C k�k e(C")t

and multiplying back with e��t

kx(t)k � C k�k e�(��C")t (14)

kx(t)k � C k�k e��t (15)

It is valid as long as kx(t)k < �"!!!
Now we can choose � = ��C" > 0, by choosing " small enough,� = min

�
1
2
�"=C; �"=2

	
and k�k < �: This choice of initial conditions implies that

kx(t)k � �"; (16)

as long as this solution exists (!!!)

The last estimate (16) implies an important conclusion that the solution can be ex-

tended in fact to the whole R+, because supposing the opposite, namely that there is
some maximal existence time tmax <1; leads to a contradiction.
The fact that solution x(t) can be extended to the whole R+ and satis�es the estimate
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(16) implies that this solution must satisfy the desired estimate

kx(t)k � C k�k e��t

for all t 2 [0;1) and implies the asymptotic stability of the equilibrium point in the

origin.�
Black square is for the end of a proof!
For the extension result above we can refer here to Lemma 4.9. p. 110. "On

the extension to the boundary point of the open existence time interval for a bounded

solution having the closure of the orbit in G " and to the Corollary 4.10, p. 111.
about "Eternal life" of solutions with orbits enclosed in a compact.

Lemma 4.9. p. 110. states that if the positive orbit O+ of a solution x : (a; b)! Rn

to the problem:

x0 = f(t; x)

x(�) = �

O+ = fx(t) : t 2 [� ; b)g has a compact closure, then this solution can be extended to
the closed interval [� ; b]. Applying Peano theorem to the same equation with inital data

(b; x(b)) - we get an extension to a longer time interval [� ; b+�): Repeating this argument

we get an extension to the whole [� ;1) :
Corollary 4.10, p. 111. considers a maximal solution x : Imax ! G having it�s

"future" half - orbit O+ = fx(t) : t 2 Imax \ [� ;1)g contained in a compact subset C :

O+ � C of G. The conclusion of the Corollary is that such solution must have Imax
in�nite to the right (in future): sup(Imax) = 1 for the equation de�ned on the in�nite

time interval [� ;1) valid for autonomous ODE here.

We give here a proof of the extension of solution x(t) to [0;1), in this particular case,
but do not require it at the exam.

(It is an important theoretical argument. Check similar argument in Lemma
4.9, p. 110 in LR that we formulate in more general situation later )
The last estimate kx(t)k � �"; implies in fact an important conclusion that the solution

must exist in fact on the whole R+, because supposing the opposite, namely that there is
some maximal existence time tmax; leads to a contradiction.

Let consider this important argument. It consists of two steps.

1) We use the continuity and boundedness of the solution x(t) on [0; tmax) together

with the integral form of the equation

x(t) = � +

Z t

0

Ax(�)d� +

Z t

0

h(x(�))d�
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The set fx(t) : t 2 [0; tmax)g (that is the orbit of the solution), is bounded according
to (16). The closure C of this set is therefore compact. The function h(x) is continuous

on G and is therefore bounded on the compact set C.

For any sequence ftkg1k=1 such that tk ! tmax the sequence of values fx(tk)g1k=1is a
Cauchy sequence and therefore has a limit

lim
k!1

x(tk) = �

because

kx(tm)� x(tk)k �




Z tm

tk

Ax(�)d� +

Z tm

tk

h(x(�))d�





 �����Z tm

tk

kAk kx(�)k d�
����+ ����Z tm

tk

kh(x(�))k d�
���� � C jtm � tkj ! 0; m; k !1

This limit is unique and independent of the sequence ftkg1k=1 by a similar estimate. There-
fore we can extend x(t) up to the point tmax as

x(tmax)
def
= � = lim

t!tmax
x(t)

The extended function x(t) will be continuous on [0; tmax].

2) Now using an existence theorem (Peano or Picard-Lindelöf) for non-linear systems

of ODEs, we conclude that there is a solution y(t) to the equation

y0(t) = Ay + h(y)

on the time interval [tmax; tmax + �) with the initial condition y(tmax) = � = x(tmax) at

time tmax. This solution is evidently an extension of the original solution x(t) to a larger

time interval, that contradicts the our supposition.

Therefore the solution x(t) can be extended to the whole R+ and satis�es the estimate
(16).�
The last theorem implies immediately the following result on the stability of equilib-

rium points by linearization.

Theorem.On stability of equilibrium points by linearization. (Corollary 5.29,
p. 195)

Let f : G ! RN , G � RN be a non empty open set with 0 2 G , f be continuous

and f(0) = 0:Let f be di¤erentiable in 0 and A be the Jacoby matrix of f in the point

0: A = D(f)(0):

Aij =
@fi
@xj

(0); i; j = 1; :::N
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If A is a Hurwitz matrix (all eigenvalues � 2 �(A) have Re� < 0), then the equilibrium
point of the system

x0(t) = f(x(t))

in the origin is asymptotically stable.

Proof. Consider the function h(z) = f(z) � Az. Then by the de�nition of Jacoby
matrix kh(z)k = kzk ! 0 as z ! 0. An application of the theorem about stability of a

small perturbation of a linear system to the function f(z) = Az + h(z) proves the the

claim. �
The following general theorem by Grobman and Hartman that we formulate without

proof is a strong result on connection between solutions to a nonlinear system

x0(t) = f(x(t)); (17)

x(0) = � (18)

with right hand side f(x) close to an equilibrium point x�, f(x�) = 0 and solutions to the

linearized system

y0(t) = Ay (19)

y(0) = � � x� (20)

with constant matrix A that is Jacobi matrix of the right hand side f in the equilibrium

point x�, A = D(f)(x�):

Aij =
@fi
@xj

(x�); i; j = 1; :::N

�
De�nition. An equilibrium point x� of the system (17) is called hyperbolic if for all

eigenvalues � 2 �(A) it is valid that Re� 6= 0.
Theorem. (Grobman-Hartman) A formulation and a (di¢ cult!) proof can

be found as Th. 9.9 at the page 266, in the book by Teschl: http://www.mat.univie.ac.at/%7Egerald/ftp/book-
ode/index.html
Consider an I.V.P. for a autonomous system of di¤erential equations

x0(t) = f(x(t)); (21)

x(0) = � (22)

Let f 2 C1(B), in BR(x�) = f� : k� � x�k < R g � G and x� 2 G be a hyperbolic
equilibrium point of (17): f(x�) = 0:

Then there are neighborhoods U1(x�) and U2(x�) of x� and an invertible continuous

mapping R : U1(x�)! U2 (x�) such that R maps shifted solutions x�+ eAt(� � x�) to the
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linearized system (19) onto solutions x(t) = '(t; R(�)) of the non-linear system (17) with

initial data

� = R(�); � = R�1 (�)

R
�
x� + e

At(� � x�)
�
= '(t; R(�))

and back

R�1 ('(t; �)) = x� + e
At(R�1 (�)� x�)

as long as x� + eAt(R�1 (�)� x�) 2 U1(x�).�

Various classes of topologically equivalent equilibrium points in the plane: a) asymp-

totically stable, b) center, c) saddle point, d) unstable:

In higher dimensions there is a larger variety of topologically di¤erent con�gurations

of phase protraits around equilibrium points.
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Example on application of the Grobman - Hartman theorem
Consider the system

x01 = �1
2
(x1 + x2)� x21

x02 =
1
2
(x1 � 3x2)

It has two equilibrium points: one in the origin (0; 0) and the second one is (�2=3;�2=9):We
�nd them by expressing x1 = 3x2 , from the equation 1

2
(x1� 3x2) = 0, substituting to the

equation �1
2
(x1+x2)�x21 = 0, and solving the quadratic equation �1

2
(3x2+x2)�9x22 = 0

for x2.

�1
2
(3x2 + x2)� 9x22 = �x2 (9x2 + 2) = 0:

and its linearization in the origin:

x01 = �1
2
(x1 + x2)

x02 =
1
2
(x1 � 3x2)

The linearized system has matrix A =

"
�1
2
�1
2

1
2

�3
2

#
, characteristic polynomial: �2+2�+

1 = 0, eigenvalues: �1;2 = �1. The only eigenvector is
"
1

1

#
. The origin is a stable for

both systems. This equilibrium point is asymptotically stable.

On the other hand we see that another equilibrium (�2=3;�2=9) of the non-linear
system seems to be a saddle point.

We check it now. For an arbitrary point we need �rst to calculate the Jacoby matrix

of the right hand side in the system x0 = f(x) in an arbitrary point x 2 R2

[Df ]ij (x) =
@fi
@xj

(x)

[Df ] (x) =

"
@f1
@x1
(x) @f1

@x2
(x)

@f2
@x1
(x) @f2

@x2
(x)

#
=

"
�1=2� 2x1 �1=2

1=2 �3=2

#

Calculating the Jacoby matrix in the second equilibrium point (�2=3;�2=9) we get
the matrix for the linearization of the right hand side in this point:

A =

"
�1=2� 2(�2=3) �1=2

1=2 �3=2

#
=

"
5
6
�1
2

1
2
�3
2

#

The characteristic polynomial is p(�) = �2 � �tr(A) + det(A). tr(A) = 5=6 � 3=2 =
�2
3
. det(A) = 5

6

�
�3
2

�
� 1

2

�
�1
2

�
= �1: Therefore p(�) = �2 + 2

3
� � 1. Eigenvalues are

real and have di¤erent signs because the determinant det(A) of A is negative. We do not
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need to calculate them to make these conclusions.

Therefore the linearized system

y0 = Ay

has a saddle point in the origin. The non-linear system also has a saddle point con�g-

uration in the phase portrait close to the equilibrium point (�2=3;�2=9) according to
the Grobman-Hartman theorem. This equilibrium point is unstable. If we like to sketch

a more precise phase portrait for the linearized system we can calculate eigenvalues and

eigenvectors. But we can only guess the global phase portrait for the non-linear system

(how local phase portraits connect with each other). We give below phase portraits for

the non-linear system and for the linearized system around each of equilibrium points.

1050-5-10

7.5

5

2.5

0

-2.5

-5

-7.5

x

y

x

y

Phase plane for the linearized system around the equilibrium point (�2=3;�2=9)

Counterexample to the Grobman - Hartman theorem.
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A system such that the linearized system has a center (stable) but the non-linear has

an unstable equilibrium point.

Consider the system

dx1
dt

= x2 + (x
2
1 + x

2
2)x1

dx2
dt

= �x1 + (x21 + x22)x2

The origin (0; 0) is an equilibrium point and the linearized system in this point has the

form

x0 =

"
0 1

�1 0

#
x

The origin is a center that is a stable equilibrium point.

Consider the equation for r2(t) = x21(t) + x
2
2(t):We derive it by multiplying the �rst

equation by x1 and the second by x2 and considering the sum of the equations leading to

x1
dx1
dt
+ x2

dx2
dt

=
1

2

d (x1)
2

dt
+
1

2

d (x2)
2

dt
=
1

2

d

dt

�
r2(t)

�
=
�
r2(t)

�2
We see that the solution to this equation z = r2

1

2

dz

dt
= z2

dz

z2
= 2dtZ

dz

z2
=

Z
2dt

�1
z
= 2t+ C

�1
z(0)

= C

�1
z
= 2t+

�1
z(0)

z = r2

with separable variables with arbitrary initial data r(0) is

r2(t) =
r2(0)

1� 2r2(0)t

The solution r2(t) is increasing with time and tends to in�nity with t rising and blows up

in �nite time.

The equilibrium (0; 0) to the nonlinear system is unstable. The phase portraits of

the nonlinear system and the linearized system are qualitatively di¤erent in this example

17



when eigenvalues to the Jacoby matrix of the right hand side of the nonlinear system in

the equilibrium point have real parts equal to zero.

Example on application of the Grobman - Hartman theorem
Find for which values of the parameter a the origin is an asymptotically stable equi-

librium, stable equilibrium, unstable equilibrium of the following system:(
x0 = y

y0 = �ay � x3 � a2x
(4p)

Solution. Consider the Jacoby matrix of the right hand side in the equatiuon.

A(x; y) =

"
0 1

�a2 � 3x2 �a

#
. It�s value in the origin is A(0; 0) =

"
0 1

�a2 �a

#
, with

characteristic polynomial: p(�) = �2 + a�+ a2.

Eigenvalues are �1;2 = �a
2
�
q

a2

4
� a2 = �a

2
� i
q

3a2

4
komplex eigenalues with real

part Re�1;2 = �a
2
.

The Grobman - Hartman theorem about stability by linearization imples that the

origin is asymptotically stable when a > 0 and is unstable when a < 0.

For a = 0 linearization does not give any information about stability because

in this case Re�1;2 = 0. In this case the system is reduced to

(
dx
dt
= y

dy
dt
= �x3

and we can

�nd an equation for orbits (traces of solutions on the phase plane) of the system from an

ODE with separable variables:

dy

dx
=

dy=dt

dx=dt
=
�x3
y

ydy = �x3dxZ
ydy = �

Z
x3dx

y2

2
= �x

4

4
+ C

x4

4
+
y2

2
= C

1.2510.750.50.250-0.25-0.5-0.75-1-1.25

1.25

1

0.75

0.5

0.25
0

-0.25

-0.5

-0.75

-1

-1.25

x

y

x

y

Solutions to the ODE in the case when a = 0 will be periodic and go along �attened
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ellipses in the picture.

Example. Stability by linearization for the pendulum with friction.

x01(t) = x2(t)

x02(t) = � 

m
x2(t)�

g

l
sin(x1(t))

Linearized equation around (0; 0) is

x01(t) = x2(t)

x02(t) = � 

m
x2(t)�

g

l
x1(t)

The matrix of the system is

A =

"
0 1

�g
l
� 

m

#

tr(A) = � 

m
< 0; det(A) = g

l
> 0. Therefore the Re� < 0 for all � 2 �(A). For small

friction coe¢ cient 
 the equilibrium will be focus, for large friction it will be a stable

node. An intermediate case with stable improper node is also possible.

Point out that the case with zero friction: 
 = 0 cannot be treated by linearization,

because the linearized system has a center in the origin. The non-linear system has in

fact also a center in the origin, but we cannot prove it by means of linearization. We will

consider this case later by di¤erent means.
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The linearization of the equation around (�; 0).

Linear approximation for sin around �. Let (x1 � �) = y1(t):

sin(x1) = sin(�) + cos(�)(x1 � �) +O(x1 � �)2 � �(x1 � �) = �y1(t)

y1(t) = x1(t)� �; y01(y) = x01(t)

therefore

x1(t) = y1(t) + �; x
0
1(y) = y

0
1(t)

x2(t) = x01 = y
0
1(t)

Introducing y2 = y01 = x2; we get x2 = y2

sin(x1) = sin(�) + cos(�)y1 +O(� � x1)2

;

x01(t) = x2(t)

x02(t) = � 

m
x2(t)�

g

l
sin(x1)

y01(t) = y2(t)

y02(t) = � 

m
y2(t)�

g

l
(�y1)

The linearized equation around (�; 0)

y01(t) = y2(t)

y02(t) =
g

l
y1(t)�




m
y2(t)

The matrix of the system is

A =

"
0 1
g
l
� 

m

#
Characteristic polynomial: p(�) = �2 �

�
� 

m

�
�� g

l
.

tr(A) = � 

m
< 0; det(A) = �g

l
< 0. The equilibrium is always a saddle point

(instable).

Example on application of the Grobman - Hartman theorem
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Find all stationary points of the system of ODE

(
x0 = ey � ex

y0 =
p
3x+ y2 � 2

and investigate

their stability by linearization.

1. Solution.

We �nd stationary points by pointing out that the �rst equation implies y = x and

then
p
3x+ x2 � 2 = 0 implies 3x+ x2 � 4 = (x+ 4) (x� 1) = 0 and therefore two

roots x1 = 1 and x2 = �4 follow.

We have two stationary points: (1; 1) and (�4;�4).

The Jacobi matrix is J(x; y) =

24 �ex ey

3

2
p
3x+y2

yp
3x+y2

35
J(1; 1) =

"
�e e
3

2
p
3+1

1p
3+1

#
=

"
�e e
3
4

1
2

#
The trace of J(1; 1) is tr (J(1; 1)) = 1=2�

e < 0

det (J(1; 1)) = e(�1=2� 3=4) = �5
4
e < 0 it implies that the stationary point (1; 1)

is has one negative and one postive eigenvalue and therefore is a saddle point and

is unstable by the Grobman Hartman theorem.

The characteristic equation for a 2x2 matrix A is �2 � tr(A)�� det(A) = 0:

In this particular situation it is �2 +
�
e� 1

2

�
�� 5

4
e = 0:

Eigenvalues are: �1 = �1
2
e+ 1

4
� 1

4

p
16e+ 4e2 + 1, �2 = �1

2
e+ 1

4
+ 1
4

p
16e+ 4e2 + 1.

J(�4;�4) =
"
�e�4 e�4

3
4

�4
2

#
=

"
�e�4 e�4

3
4

�2

#
.

The trace of J(�4;�4) is tr (J(�4;�4)) = �2� e�4 < 0.

det (J(�4;�4)) = e�4
�
2� 3

4

�
= 5

4
e�4 > 0: Therefore the the real parts of eigen-

values are negative and the stationary point (�4;�4) is an asymptotically stable
equilibrium by the Grobman Hartman theorem.

The characteristic equation is �2 + (e�4 + 2)�+ 5
4
e�4 = 0.

Eigenvalues are : �1 = �1
2
e�4�1� 1

2

q
1
e8
� 1

e4
+ 4; �2 = �1

2
e�4�1+ 1

2

q
1
e8
� 1

e4
+ 4
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Example on the application of the Grobman - Hartman theorem(
x0 = y

y0 = �y � x� x2
Nullclines of this system have equations y = 0 ( x - nullcline), and y = �x� x2

0.40.20-0.2-0.4-0.6-0.8-1-1.2-1.4

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

x

y

x

y

(y - nullcline). Draw directions of velocities on nullclines!

Equilibrium points are intersection popints of di¤erent nullclines: (0; 0) and (�1; 0):

Jacobi matrix of the right hand side in the ODE is A(x; y) =

"
0 1

�1� 2x �1

#
:

Jacobi matrix in the origin is

"
0 1

�1 �1

#
, the characteristic polynomial is p(�) =

�2 + �+ 1, eigenvalues are �1
2
i
p
3� 1

2
; 1
2
i
p
3� 1

2
. Real parts of eigenvalues are negative

and therefore the origin is stable focus, asymptotically stable equilibrium.

Jacobi matrix in the point (�1; 0) is
"
0 1

1 �1

#
, the characteristic polynomial is p(�) =

�2 + � � 1;eigenvalues are �1
2

p
5 � 1

2
; 1
2

p
5 � 1

2
. One is negative, another is positive,

the equilibrium point is a saddle point and is unstable. One can also just point out

that det

"
0 1

1 �1

#
= �1 < 0 that implies the same conclusion using Poincare diagram

without calculating eigenvalues.
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