1 Pendulum without friction. First integral.

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & =-\frac{g}{l} \sin \left(x_{1}(t)\right)
\end{aligned}
$$

2 Stability by linearization for the pendulum with friction.

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & =-\frac{\gamma}{m} x_{2}(t)-\frac{g}{l} \sin \left(x_{1}(t)\right)
\end{aligned}
$$

Linearized equation around $(0,0)$ is

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & =-\frac{\gamma}{m} x_{2}(t)-\frac{g}{l} x_{1}(t)
\end{aligned}
$$

The matrix of the system is

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} & -\frac{\gamma}{m}
\end{array}\right]
$$

$\operatorname{tr}(A)=-\frac{\gamma}{m}<0 ; \operatorname{det}(A)=\frac{g}{l}>0$. Therefore the $\operatorname{Re} \lambda<0$ for all $\lambda \in \sigma(A)$.
For small friction coefficient γ the equilibrium will be focus, for large friction it will be a stable node. An intermediate case with stable improper node is also possible.

Point out that the case with zero friction: $\gamma=0$ cannot be treated by linearization, because the linearized system has a center in the origin. The nonlinear system has in fact also a center in the origin, but we cannot prove it by means of linearization. We will consider this case later by different means.

The linearization of the equation around $(\pi, 0)$.
Linear approximation for sin around π. Let $\left(x_{1}-\pi\right)=y_{1}(t)$.

$$
\begin{gathered}
\sin \left(x_{1}\right)=\sin (\pi)+\cos (\pi)\left(x_{1}-\pi\right)+O\left(x_{1}-\pi\right)^{2} \approx-\left(x_{1}-\pi\right)=-y_{1}(t) \\
y_{1}(t)=x_{1}(t)-\pi ; y_{1}^{\prime}(y)=x_{1}^{\prime}(t)
\end{gathered}
$$

therefore

$$
\begin{aligned}
& x_{1}(t)=y_{1}(t)+\pi ; x_{1}^{\prime}(y)=y_{1}^{\prime}(t) \\
& x_{2}(t)=x_{1}^{\prime}=y_{1}^{\prime}(t)
\end{aligned}
$$

Introducing $y_{2}=y_{1}^{\prime}=x_{2} ;$ we get $x_{2}=y_{2}$

$$
\sin \left(x_{1}\right)=\sin (\pi)+\cos (\pi) y_{1}+O\left(\pi-x_{1}\right)^{2}
$$

;

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & =-\frac{\gamma}{m} x_{2}(t)-\frac{g}{l} \sin \left(x_{1}\right) \\
y_{1}^{\prime}(t) & =y_{2}(t) \\
y_{2}^{\prime}(t) & =-\frac{\gamma}{m} y_{2}(t)-\frac{g}{l}\left(-y_{1}\right)
\end{aligned}
$$

The linearized equation around $(\pi, 0)$

$$
\begin{aligned}
y_{1}^{\prime}(t) & =y_{2}(t) \\
y_{2}^{\prime}(t) & =-\frac{\gamma}{m} y_{2}(t)+\frac{g}{l} y_{1}
\end{aligned}
$$

The matrix of the system is

$$
A=\left[\begin{array}{cc}
0 & 1 \\
\frac{g}{l} & -\frac{\gamma}{m}
\end{array}\right]
$$

Characteristic polynomial: $p(\lambda)=\lambda^{2}-\left(\frac{g}{l}\right) \lambda+\left(\frac{1}{m} \gamma\right)$.
$\operatorname{tr}(A)=-\frac{\gamma}{m}<0 ; \operatorname{det}(A)=-\frac{g}{l}<0$. The equilibrium is always a saddle point (unstable).

3 Stability for the pendulum with friction by Lyapunov techniques.

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & =-\frac{\gamma}{m} x_{2}(t)-\frac{g}{l} \sin \left(x_{1}(t)\right)
\end{aligned}
$$

Let $k^{2}=\frac{g}{l}$

$$
\begin{aligned}
\theta^{\prime} & =\psi \\
\psi^{\prime} & =-\frac{\gamma}{m} \psi-k^{2} \sin \theta
\end{aligned}
$$

The function $V(\theta, \psi)$

$$
V(\theta, \psi)=\frac{\psi^{2}}{2}+G(\theta)
$$

with $G(\theta)=k^{2}(1-\cos \theta)$ is the first integral of the system describing the pendulum without friction.

$$
\begin{aligned}
\nabla V \cdot f & =V_{f}=\left[\begin{array}{c}
k^{2} \sin \theta \\
\psi
\end{array}\right] \cdot\left[\begin{array}{c}
\psi \\
-\left(\frac{\gamma}{m} \psi+k^{2} \sin \theta\right)
\end{array}\right]= \\
& =\psi k^{2} \sin \theta-\psi k^{2} \sin \theta-\left(\frac{\gamma}{m}\right) \psi^{2}=-\left(\frac{\gamma}{m}\right) \psi^{2} \leq 0
\end{aligned}
$$

Level sets of the function $V(\theta, \psi)=h$ consist of the orbits of the system without friction $\gamma=0$.

$$
\begin{aligned}
\frac{\psi^{2}}{2}+G(\theta) & =h \\
\psi & = \pm \sqrt{2(h-G(\theta))}= \pm \sqrt{2\left(h-k^{2}(1-\cos \theta)\right)}
\end{aligned}
$$

There are level sets corresponding to $h=2 k^{2}$ consisting with of upper unstable equilibrium points where $\cos \theta=-1$ and orbits connecting them and corresponding to trajectories that tend to the upper unstable equilibriums and not rotating further. Level sets with $h>2 k^{2}$ correspond to unbounded trajectories and the rotation of the pendulum around the pivot. Level sets corresponding to $h<2 k^{2}$ correspond to periodic solutions and surround just one equilibrium point.

