
1 General properties of ! -limit sets. La Salle�s

invariance principle and it�s applications to as-

ymptotic stability.§5.2.

Example. An elementary introduction to LaSalle�s invariance principle.
We like to investigate stability of equilibrium point in the origin for the system

x01 = x2

x02 = �x1 � x32

Using the simple test function V (x1; x2) = x21+x
2
2 we observe that it is a Lyapunov

function for the system:

Vf (x1; x2) = rV � f(x1; x2) = 2x1x2 � 2x1x2 � 2x42 = �2x42 � 0

and the origin is a stable equilibrium point. But V is not a strong Lyapunov function,

because Vf (x1; x2) = 0 not only in the origin, but on the whole x1 - axis where x2 is

zero.

On the other hand considering the vector �eld of velocities of this system on the x1
- axis, we observe that they are crossing the x1 - axis (even are orthogonal to it in this

particular example) in all points except the origin. It means that all trajectories of the

system cross and immediately leave the x1 - axis that is the line where Vf (x1; x2) =

0 (the Lyapunov function is not strong). This observation shows that in fact the

Lyapunov function V ('(t; �)) is strictly monotone decreasing along trajectories '(t; �)

everywhere except discret time moments, when '(t; �) crosses the x1 - axis (in fact

even in this points, just the derivative V 0('(t; �)) = 0 when the second component of

'(t; �) is zero).

More explicitely we can express the same e¤ect in polar coordinates r and �:

�
r2
�0
= �2r4 sin4 �

We can therefore conclude that V ('(t; �))& 0 as t!1 and therefore, the origin

is asymptotically stable equilibrium of this system of equations.

One can also get a more explicit picture of this dynamics by looking on the equation

for the polar angle �:
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�
x2
x1

�0
= (tan(�))0 =

�0

cos2(�)

x02x1 � x01x2
x21

=
(�x1 � x32)x1 � (x2)x2

x21

=
(�x21 � x22 � x1x32)

x21
=
�r2 � cos � sin3 � r4

r2 cos2 �

�0 = �1� cos � sin3 � r2 = �1�
�
sin 2� sin2 �

�
r2

2

= �1� sin 2�(1� cos 2�)r
2

4
< 0, r < 2

We see that for r < 2 we have �0 < 0 and the trajectories tend to the origin going

(non-uniformly) as spirals clockwise around the origin.

This example demonstrates the main idea with applications of the LaSalles invari-

ance principle to asymptotic stability of equilibrium points.
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Proposition. Simple version of applying LaSalle�s invariance principle
for asymptotic stability of equilibrium points by using "weak" Lyapunof
functions.
( The complete version of LaSalle�s invariance principle is Theorem 5.15. p. 183

that is considered a bit later)

We �nd a simple "weak" Lyapunov function Vf (z) � 0 for z 2 U in the domain

U � G, 0 2 U: This fact implies stability of the equilibrium and existence of solutions

on "in�nite" time interval in future. Then we check what happens on the set V �1f (0)

where Vf (z) = 0. If the set V �1f (0) contains no other orbits except the equilibrium

point, then according to Theoren Th. 5.15, p. 183. L.R., this equilibrium point in the

origin must be asymptotically stable.

The following observation helps to proof that the conditions in the previous argu-

ments are satis�ed for a particular equation.

Any trajectory '(t; �) starting in a setW � U that is positie invariant and compact,
� 2 W will have a positive orbit O+(�) with compact closure. The setW can be chosen

in this context as a subsetW � U , bounded by a level set of the Lyapunov function V :
@W = fx : V (x) = constg such that trajectories will not go outside W because Vf � 0
in U . We need this property of trajectories in W for applying LaSalle�s invariance

principle describing ! - limit sets for positive orbits of solutions to ODEs.

Exercise.
Show that all trajectories '(t; �) of the system

x0 = y

y0 = �x� (1� x2)y

that go through points in the domain



[x; y]T


 < 1; stay in it and tend to the origin.

Or by other words, show that the origin is an asymptotically stable equilibrium and

that the circle



[x; y]T


 < 1 is it�s domain of attraction.

Consider V (x; y) = x2 + y2: observe that for x2 + y2 < 1

Vf (x; y) = 2xy � 2xy � (1� x2)y2 = �(1� x2)y2 � 0
V �1f (0) = f(x; y) : y = 0g

V �1f (0) consists of the x - axis. V is a Lyapunov function and therefore the origin

is a stable equilibrium point.

The only invariant set in V �1f (0) is the origin f0g, because when y = 0, we get

y0 = �x 6= 0 outside the origin on the x - axis. It implies that any trajectory starting
on the x� axis leaves it immediately, except the trajectory starting in the origin.
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Therefore for trajectories starting in



[x; y]T


 < 1 the origin is an attractor and it

is asymptotically stable with



[x; y]T


 < 1 being a region (domain) of attraction.

Example of a non-trivial !� limit set.
The Lorentz equation. Trajectory - blue, ! - limit set 
(�) - red

x0 = ��(x� y)
y0 = rx� y � xz
z0 = xy � bz

A trajectory for � = 10; r = 28, b = 8=7:
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More general formulation and a proof of the LaSalle�s invariance principle use some

general properties of transition mappings, and ! - limit sets. We collect them here and

give some comments about their proofs.

We consider I.V.P. and corresponding transition mapping '(t; �) for the system

x0 = f(x)

x(0) = �

with f : G! Rn, G - open, G � Rn, f is locally Lipschitz; � 2 G.

Proposition. Translation invariance of the transition mapping for au-
tonomous systems. Theorem 4.35, p. 140 -141.
The transition mapping '(t; �) is per de�nition the maximal solution to the I.V.P.

with initial data � at time t = 0 above: x(t) = '(t; �).

For an autonomous ODEs it has the following properties

(1) '(0; �) = � for all � 2 G
(2) if � 2 G and � 2 I� and t+ � 2 I� - where I� = Imax(�) is the maximal interval

for �, then

I'(�;�) = (I�)� �
'(t+ � ; �) = '(t; '(� ; �)); 8t 2 I� � �

Proof of this statement follows easily from the uniquness of solutions to I.V.P.s.
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We consider �rst a trajectory '(:::; �) starting at the point � 2 G at time t = 0 and
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�nishing at time � at the point '(� ; �) (blue curve on the picture). Then we continue

this movement from the last point '(� ; �) during time t (red curve) coming �nally to

the point '(t; '(� ; �)) in the right hand side of the equation in the conclusion of the

theorem.

The fact that solutions are unique (meaning that trajectories have no branches)

and the equation is autonomous (velocity �eld f is independent of time) makes that

this movement is equivalent to just moving with the �ow '(t; �) starting from the point

� during the total time t+ � , that is the left hand side in the equation.

1.1 Main theorem on the properties of limit sets.

The next theorem on the properties of ! - limit sets collects properties of ! - limit sets

valid for systems of any dimension, in contrast with the Poincare - Bendixson theorem

and it�s generalization, that gives a description of ! - limit sets only for systems in

plane, or on 2-dimensional manifolds.

Main theorem about properties of ! - limit sets. Theorem 4.38, p.143
We keep the same limitations and notations for the autonomous system as above.

Let � 2 G: Let the closure of the postive semi-orbitO+(�) be compact and contained
in G,

Then R+ � I� , where I� is the maximal interval, and the ! - limit set 
(�) � G is
1) non-empty

2) compact (bounded and closed)

3) connected

4) invariant (both positively and negatively) under the local �ow '(t; �) generated

by the ODE: namely for any ! - limit point � 2 
(�); the maximal interval I� = R for
the initial data �, and '(t; �) 2 
(�) for all t 2 R.
5) '(t; �) approaches 
(�) as t!1:

lim
t!1

dist('(t; �); 
(�)) = 0

Remark
The most interesting statement in the theorem is statement 4). It means that !

- limit sets consist of orbits of solutions to the system. Taking a starting point � on

the ! - limit set 
(�) we get a trajectory '(t; �) that stays within this set 
(�) during

in�nitely long time both in the future and in the past.

Remark

6



A simple tool to satisfy conditions in this theorem is to �nd a compact positively

invariant set for the system, such that it contains the point �. It can be done using

one of two methods discussed earlier.

Proofs of statements in the Theorem 4.38, are based on the following mathemat-
ical tools:

1. general properties of compact sets for 1) ,2),

2. simple contradiction arguments and the de�nition of limit sets for 3)

3. the transition property of the transition mapping '(t; �), together with continuity

of '(t; �) for 4)

4. a contradiction argument togehter with the de�nition of ! - limit sets for 5).

We will only give a proof to 4) here supposing that 1), 2), and 3) are already proven.

Proof to 4)
Let � be an ! - limit point for �: � 2 
(�). By the de�nition there is a sequence of

times ftng, tn !1 such that '(tn; �)! �.

Consider the trajectory '(t; �) starting at �.

Denote by I� corresponding maximal interval and consider an arbitrary t 2 I�,
belonging to the maximal interval I�.

We like to show that '(t; �) 2 
(�);namely that a trajectory starting in an ! - limit
set 
(�) stays within this ! - limit set forever in the future and in the past.

For n large enough introduce notation t + tn
def
= sn 2 R+ - that belongs to the

maximal interval I� of the solution '(t; �) for n large enough because tn ! 1 and

R+ � I�.
We are going to apply the transition property for ' for the time interval: t+tn = sn

' (sn; �) = ' (t+ tn; �) = ' (t; '(tn; �))

It is possible to apply because of the following argument.

The domain D of '(:; :) is open, (t; �) 2 D; therefore there is a ball B around (t; �)
such that (t; '(tn; �)) 2 B � D for n large enough because '(tn; �)! �.

Therefore t 2 I'(tn;�) for n large enough
By continuity of ' it follows:

' (sn; �) = ' (t+ tn; �) = '

�
t;

lim=�

'(tn; �)

�
! '(t; �); n!1

It means that '(t; �) is an ! - limit point for ' (t; �) for any t 2 I�.
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Moreoer, since 
(�) is a compact subset in G, we obtain that I� = R by the

Corollary 4.10 about the extension of an orbit (both in the past and in the future) that

has compact closure in G:

�
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LaSalle�s invariance principle

We formulate now LaSalle�s invariance principle that generalizes ideas that we dis-

cussed in the introductory examples and gives a handy instrument for localizing ! -

limit sets of non-linear systems in arbitrary dimension.

Theorem 5.12, p.180 (proof is required at the exam)
Assume that f is locally Lipschitz f : G! Rn as before and let '(t; �) denote the

�ow generated by the corresponding system

x0 = f(x)

Let U � G be non-empty and open. Let V : U ! R be continuously di¤erentiable
and such that Vf (z) = rV � f(z) � 0 for all z 2 U . Let � 2 U be such that the closure
of the semi-orbit O+(�) is compact and is contained in U ,

i) then R+ � I� (maximal existence interval for �) and
ii) as t!1, '(t; �) approaches the largest invariant set contained in V �1f (0) that

is the set where Vf (z) = 0.

Proof.
This proof given in the solution of Exercise 5.9, on p. 312.

Set x(t) = '(t; �). By continuity of V and compactness of the closure cl(O+(�)), V

is bounded on O+(�) and therefore the function V (x(t)) of time t is bounded.

� Since
d

dt
(V (x(t))) = Vf (x(t)) � 0

for all t 2 R+; V (x(t)) is non-increasing. We conclude that the limit limt!1 V (x(t)) of

the non-increasing function V (x(t))must exist and is �nite because V is continuous and

must be �nite on the compact closure of the semi-orbit O+(�) = f'(t; �); t 2 R+g.
We denote it by �:

lim
t!1

V (x(t)) = �

� Take an arbitrary point z 2 
(�) in the ! - limit set 
(�). Then by the
de�nition of ! - limit sets, there is a sequence ftng in R+ such that limn!1 tn = 1
and

x(tn) = '(tn; �) �! z; n!1

We apply the continuous function V to the left and right hand side in this limit calu-

lation.

For any continuous function F and any convergent sequence fgngit is valid that

F ( lim
n!1

gn) = lim
n!1

(F (gn))
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� By the continuity of V it follows that

V (z) = lim
n!1

V (x(tn))

and

lim
n!1

V (x(tn)) = lim
t!1

V (x(t))

Therefore

V (z) = lim
n!1

V (x(tn)) = lim
t!1

V (x(t)) = �:

This key point in the proof (!!!) implies that for ALL z in the ! - limit set 
(�) the

test function V has the same value:

V (z) = �; 8z 2 
(�) (1)

� By the invariance of 
(�) with respect to '(t; :);(!!!) if z 2 
(�), then '(t; z) 2

(�) for all t 2 R.
(it is why the theorem is called the invariance principle!!!)
Therefore V ('(t; z)) = � for all t 2 R and is a constant function of time t (!!!).
A constant function must have zero derivative:

d

dt
V ('(t; z)) = Vf ('(t; z)) = 0

for all t 2 R+. Since '(0; z) = z and z is an arbitrary point in 
(�) it follows that

Vf (z) =
d

dt
V ('(t; z))

����
t=0

= 0; 8z 2 
(�) (2)

z = '(0; z) (3)

and therefore the ! - limit set 
(�) belongs to V �1f (0) ;


(�) � V �1f (0)

where V �1f (0) is the set of x where Vf (x) = 0:

� The statement of the theorem follows now from the Main theorem about !- limit
sets (Theorem 4.38); that states:


(�) is an invariant set under the action of '(t; :); and '(t; �) apporaches 
(�) as

t!1:
It makes that '(t; �) must approach the maximal invariant set inside V �1f (0) that
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is easy to �nd explicitely by checking values of f(x) on the set x 2 V �1f (0).

(It means that the maximal invariant set in V �1f (0) contains invariant set 
(�) but

can be larger: Finding 
(�) itself might be di¢ cult).

Comment. It can be tempting to simplify the proof by concluding (1) from the

fact that (rV )(z) = 0 from all z 2 
(�) which would imply (2).
However this argument is not valid, because the set 
(�) is not open and therefore

the fact that V (z) = �; has the same valuse for all z 2 
(�) does not imply Vf (z) =
0; 8z 2 
(�).
The invalidity of this simpli�ed argument is illustrated by the following simple

example: V (z) = kzk, 
(�) =
�
z 2 RN : kzk = 1

	
; then V (z) = 1 for all z 2 
(�),

but (rV ) (z) = 2z 6= 0 for all z 2 
(�):

The following theorem follows rather directly from LaSalle�s invariance principle and

gives a practical criterium for asympototically stable equilibrium points using "weak"

Lyapunov�s functions.

Theorem 5.15. p. 183.
Let U be an open domain U � G, such that 0 2 U and a continuously di¤erentiable

function V : U ! Rn such that

V (0) = 0; V (z) > 0;8z 2 Un f0g ; Vf (z) � 0;8z 2 Un f0g

and f0g is the only invariant set contained in V �1f (0). Then 0 is an asymptotically

stable equilibrium.�
Proof follows from LaSalle�s invariance principle and is a simple exercise.

Theorem 5.22, p. 188. On global asymtotic stability

Assume that G = Rn. Let the hypothesis of the Theorem 5.15 hold with U = G =

Rn.
Namely for a continuously di¤erential function V : Rn ! R such that V (0) = 0,

V (z) > 0 for all z 2 Unf0g, Vf (z) � 0 for all z 2 Unf0g; the origin f0g is the only
invariant set contained in V �1f (0):

If in addition the Lyapunov function V is radially unbounded:

V (z)!1, kzk ! 1

then the origin 0 is a globally stable equilibrium that means that all solutions

k'(t; �)k ! 0, as t!1 for all � 2 Rn
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Examples of using La Salle�s invariance principle.

Example (a problem from and old exam)

Consider the following system of ODEs.

(
x0 = y

y0 = x� x3 � ay
�
y2 � x2 + 1

2
x4
�
; a > 0

:

1. a) Find all systems equilibrium points.

b) Show using the test function H = 1
2

�
y2 � x2 + 1

2
x4
�
and La Salles invariance

principle, that the level set H(x; y) = 0 includes ! - limit sets of this system for

all points in the plane except a �nite number. Sketch these ! - limit sets. (4p)

Solution.

The system has three equilibrium points, all on the x�axis: (�1; 0), (0; 0), (1; 0).

The level set H(x; y) = 1
2

�
y2 � x2 + 1

2
x4
�
= 0 has the shape of1 with the center

in the origin. One can see it by solving by expressing y in terms of x:

y2 = x2 � 1
2
x4 = x2

�
1� 1

2
x2
�

y = � jxj
r
1� 1

2
x2

The 1 �gure is symmetrical with respect to x - axis and cuts it in points

�
p
2. The formula above implies that H(x; y) > 0 outside of the 1 �gure,

and H(x; y) < 0 inside of the 1 �gure.

210-1-2

1

0.5

0

-0.5

-1

x

y

x

y
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We calculate how the H function changes along trajectories.

Hf (x; y) =
d

dt
H(x(t); y(t)) = rH � f(x(t)) =

=

"
�x+ x3

y

#
�
"
y

x� x3 � ay
�
y2 � x2 + 1

2
x4
� # =

�xy + x3y + xy � x3y| {z }
=0

� ay2
�
y2 � x2 + 1

2
x4
�

| {z }
H(x;y)

We point out that d
dt
H(x(t); y(t)) = 0 on the level set H(x; y) = 0 (the1 �gure)

and on the x - axis. It means that trajectories are tangential to the level set

H(x; y) = 0. Therefore 1 - �gure is an invariant set for the system and consists

of three orbits: the equilibrium in the origin (that is a saddle point, easily seen

by linerization) and two closed branches of the 1 �gure correspoding to x > 0

and x < 0 in the expression y = � jxj
q
1� 1

2
x2.

Hf (x; y) =
d
dt
H(x(t); y(t)) < 0 outside of the 1 �gure and not on the x - axis

where d
dt
H(x(t); y(t)) = 0:

Hf (x; y) =
d
dt
H(x(t); y(t)) > 0 inside of the 1 �gure and not on the x - axis

where d
dt
H(x(t); y(t)) = 0:

By La Salles invariance principle all trajectories are attracted to the largest in-

variat set inside the set H�1
f (0);were Hf (x; y) = 0: This set consists of the union

of the 1 �gure and the x - axis. There are no invariant sets on the x - axis

except three equilibrium points (�1; 0), (0; 0), (1; 0).

It implies that for all points in the plain except equilibrium points, and points

on the1 �gure, H(x(t); y(t)) tends to zero along trajectories. The ! - limit sets

for these points consist of one of the branches of the 1 �gure (for points inside

it) or of the whole 1 �gure - for points outside it. The origin is the ! - limit set

for all points on the 1 �gure. Equilibrium points are ! - limit sets of themself.

Example.

Consider the following system of ODEs:

(
x0 = 2y

y0 = �x� (1� x2)y
:

Show the asymptotic stability of the equilibrium point in the origin and �nd it�s

domain of attraction. (4p)
Solution.
We try the test function V (x; y) = x2 + 2y2 that leads to cancellation of mixed

terms in the directional derivative Vf along trajectories. One can start with trying a
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more general test function x2 + ay2 with an arbitrary constant a > 0 and choose a so

that inde�nite terms in Vf would cancel.

Vf (x; y) = 4xy � 4xy � 4y2(1� x2) = �4y2(1� x2) that is not positive for jxj � 1.
Therefore the origin is a stable stationary point. Checking the behavior of the system

on the set of zeroes to Vf (x; y) inside the stripe jxj < 1 we consider (Vf )
�1 (0) =

f(x; y) : y = 0; jxj < 1g. On this set y0 = �x and the only invariant set in (Vf )�1 (0)
is the origin. LaSalle�s invariance principle implies that the origin is asymptotically

stable.

The domain of attraction is the largest set bounded by a level set of V (x; y) =

x2 + 2y2 inside the stripe jxj � 1 where te monotonicity of the Lyapunov function V
along trajectories is valid. The largest such set is the interior of the ellipse x2+2y2 = C

such that is touches the lines x = �1. Taking points (�1; 0) we conclude that 1 = C.
and the boundary of the domain of attraction is the ellipse x2 + 2y2 = 1 with halfs of

axes 1 and
p
0:5 :
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x
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x

y

The next theorem gives a simple criterion for having the whole space as the domain

of attraction for an asymptotically stable equilibrium point.

Example. Investigate stability of the equilibrium point in the origin.

x0 = �y � x3

y0 = x5

We try our simplest choice of the Lyapunov function: V (x; y) = x2 + y2 and arrive to

Vf (x; y) = �2xy � 2x4 + 2yx5

It does not work because the expression Vf (x; y) includes two inde�nite terms: 2xy and

2yx5 that change sign around the origin. We try a more �exible expression by looking

on particular expressions in the right hand side of the equation: V (x; y) = x6 + �y2

where @V=@x = 6x5 with the same power of x as in the equation, and the parameter

� that can be adjusted later. V is a positive de�nite function: V (0) = 0 and V (z) > 0
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for z 6= 0.The level sets to V look as �attened in y - direction ellipses. The curve

x6 + 3y2 = 0:5 is depicted:

0.80.60.40.20-0.2-0.4-0.6-0.8
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0.3

0.25
0.2

0.15
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0.050
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-0.15
-0.2

-0.25
-0.3

-0.35
-0.4

x

y

x

y

Vf (x; y) = 6x
5(�y � x3) + 2�yx5 = �6x5y + 2�x5y � 6x8

We get again two inde�nite terms, but they are proportional and the choice � = 3

cancels them:

Vf (x; y) = �6x8 � 0

Therefore the origin is a stable equilibrium point. Vf (x; y) = 0 on the whole y�axis
that in our "general" theory is denoted by V �1f (0).We check invariant sets of the system

on the set V �1f (0): We observe that x0 = �y 6= 0 on the y - axis outside f0g (only this
fact is important) and y0 = 0 (it does not matter for V �1f (0) that is y�axis). Therefore
f0g is the only invariant set on the y - axis. Trajectories starting on the y - axis go
across it in all points except f0g. The LaSalle�s invariance principle implies that all
trajectories approach f0g as t tends to in�nity and the origin is asymptotically stable.
The test function V (z) ! 1 as kzk ! 1. It implies that the whole plain is a

region or domain of attraction for the equilibrium point in the origin.�
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