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Lecture 19

0.1 Transition matrix function for non-autonomous linear systems.

The subject of this chapter of lecture notes is general non - autonomous linear systems of ODEs and in

particular systems with periodic coe¢ cients and Floquet theory for them.

The general theory for non - autonomous linear systems (linear systems with variable coe¢ cients) is very

similar to one for systems with constant coe¢ cients. The existence follows from Picard - Lindelöf theorem

or can be established through the solution of the integral form of equations by iterations. Uniqueness

follows general results for non-linear systems with right hand side f(t; x) locally Lipschits with respect to

x and is based on the Grönwall inequality. These results lead to the fundamental result on the dimension

of the space of solutions that is based on the uniqueness result similarly to the proof for systems with

constant coe¢ cients.
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The essential di¤erence from the case with constant coe¢ cients is that in the case with variable co-

e¢ cients one cannot �nd analytical solutions except some particular cases as systems with triangular

matrices.

We consider the I.V.P. in the di¤erential

x0 = A(t)x(t); x(�) = � (1)

or in the integral form

x(t) = � +

Z t

�

A(s)x(s)ds (2)

with matrix valued function A : J ! RN�N (or CN�N) that is continuous or piecewise continuous on the
interval J .

Here it is important that the initial time � is an arbitrary real number from J , not just zero.

The solution is de�ned as a continuous function x(t) on an interval I that includes point � 2 I; acting
into RN or CN , and satisfying the integral equation (2). By a version of Calculus main theorem (Newton-

Leibnitz theorem) the solution de�ned in such a way will satisfy the di¤erential equation (1) in points t

where A(t) is continuous.

We remind the following lemma considered in the beginning of the course.

Lemma. The set of solutions Shom to (2) is a linear vector space.
�
It motivates us to search solution in the form

x(t) = �(t; s)�

where �(t; s) is a continuous matrix valued function on J � J and � is an arbitrary initial data at t = s :

x(s) = �. It implies also that �(s; s) = I.

De�nition. The matrix �(t; �) is called transition matrix function.

Existence and uniqueness of solutions to I.V.P.
Theorem 2.5, p. 28 L&R
Let (� ; �) 2 J �RN(J �CN). The function x(t) = �(t; �)� is a unique solution to the I.V.P. (1):If y :

Jy ! RN or (CN) is a another solution to (1) x0 = A(t)x(t); then y(t) = x(t) for all t 2 Jy.
Proof.
The existence of solutions to (1) follows from the general theorem about uniqueness of solutions to

ODEs with the right hand side f(t; x) that is continuous and locally Lipschitz continuous with respect to

the space variable x: Lipschitz constant can be chosen in this case as

L = sup
t2[a;b]

kA(t)k

sup
t2[a;b]

kA(t)x� A(t)yk = sup
t2[a;b]

kA(t) (x� y)k � sup
t2[a;b]

kA(t)k kx� yk
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The maximal interval I� = J , by Proposition 4.12, p. 114, because the right hand side A(t)x in the

equation rises linearly on any compact interval [a; b] � J :

sup
t2[a;b]

kA(t)xk � sup
t2[a;b]

kA(t)k kxk

The existence of the transition matrix �(t; �) is shown in the following way.
Substituting the expression x(t) = �(t; s)� into the integral form of the i.V.P., we arrive to the vector

equation

�(t; s)� = � +

Z t

s

A(�)�(�; s)�d� =)

�(t; s)� =

�
I +

Z t

s

A(�)�(�; s)d�

�
�

with arbitrary � 2 RN that implies the matrix equation for �(t; s):

�(t; s) = I +

Z t

s

A(�)�(�; s)d� (3)

or the same equation in di¤erential form valid outside points of disconituity of A(t):

d

dt
�(t; s) = A(t)�(t; s); �(s; s) = I:

This matrix equation is equivalent to n similar I.V.P. for ODEs

'0k(t; s) = A(t)'k(t; s); 'k(s; s) =

for columns 'k(t; s), k = 1; :::n of the matrix �(t; s) with initial conditions that are corresponding columns

from the unit matrix I. These equations have unuque solutions with maximal interval Imax = J , by previous

standard arguments for this equation: Picard-Lindelöf theorem and a proposition about the extension of

solutions for the right hand side f(t; x) in the ODE x0 = f(t; x); rising not faster then linearly in x variable

on any compact time interval.

We can also show the existence of solution to this integral equation (3) for �(t; s) directly by means of

iterational approximations Mn(t; s) to �(t; s) introduced in the following way:

M1(t; s) = I; Mn+1(t; s) = I +

Z t

s

A(�)Mn(�; s)d�; 8n 2 N (4)

Lemma 2.1 , p. 24 and Corollary 2.3, p. 26 in L&R
For any closed and bounded interval [a; b] � J the sequence fMn(t; s)g converges uniformly on [a; b]�

[a; b] to a continuous on [a; b]� [a; b] matrix valued function �(t; s) that satis�es the integral equation (3).
Point out that outside of points of discontinuity of the matrix A(t) the function �(t; s) satis�es the

di¤erential equation d
dt
�(t; s) = A(t)�(t; s).
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The proof of the Lemma can be found in lecture note from 2021 available in the Modulus Lecture notes

in Canvas and in the course book.

The product x(t) = �(t; �)� gives by construction the solution to I.V.P. to the equation x0(t) = A(t)x(t)

with initial data x(�) = �. In the case when A(t) is only piecewise continuous, x(t) will be continuous

and satify the corresponding integral equation. It sati�es the di¤erential equation outside discontinuities

of A(t).

Example. For an autonomous linear system with constant matrix A the transition matrix function is

�(t; �) = exp(A(t� �)):
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0.2 Solution space.

We have considered a particular variant of the following theorem in the case of linear systems of ODEs

with constant coe¢ cients. The formulation and the proof we suggested are based only on the fact that the

set of solutions Sh is a linear vector space and on the property of the uniquness of solutions. We repeat
this argument here again for convenience with some corollaries about the structure of the transition matrix

�(t; �).

Proposition 2.7 (1), p.30, L&R.
Let b1; :::; bN be a basis in RN (or CN) and let � 2 J .
Let �(t; �) be a transition matrix to the equation

x0 = A(t)x

with A(t) being a matrix valued function A : J ! RN�N (or CN�N), piecewise continuous on the interval
J .

Then functions yj : J ! RN (or CN) de�ned as solutions

yj(t) = �(t; �)bj

with j = 1; :::; N to , the equation above form a basis of the solution space Sh of the equation.
In particular Sh is N -dimensional and for every solution x(t) : J ! RN (or CN) there exist scalars


1; :::
N such that

x(t) =
NX
j=1


jyj(t)

for all t 2 J .
Proof
We can just repeat here the proof that we gave earlier. Point out that it is more general than one given

in the course book.

Suppose that at some time t solutions yj(t) are linearly dependent. It means that there are constants

fajgNj=1 not all zero such that
NX
j=1

ajyj(t) = 0

at this time. On the other hand there is a solution that satis�es this condition. It is zero solution x�(t) = 0

for all t:

But then these two solutions must coinside because solutions are unique!!! Namely
PN

j=1 ajyj(t) = 0

for all times including t = � .Therefore
PN

j=1 ajyj(�) =
PN

j=1 ajbj = 0 because bj are initial conditions at

t = � for yj. It is a contradiction because vectors bj , j = 1; :::; N are linearly independent. Therefore yj(t)

with j = 1; :::; N are linearly independent for all t in J . �

Example.
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Calculate the transition matrix function �(t; s) for the system of equations(
x01 = t x1

x02 = x1 + t x2

x0 = A(t)x; A(t) =

"
t 0

1 t

#
x(�) = �

x(t) = �(t; �)�

Here the matrix A(t) is triangular.

The system of ODE above has triangular matrix and can be solved recursively starting from the �rst

equation.

The fundamental matrix �(t; �) sati�es the same equation, namely

d

dt
�(t; �) = A(t)�(t; �)

�(� ; �) = I

�(t; �) has columns �1(t; �) and �2(t; �) that at the time t = � have initial values [1; 0]T and [0; 1]T ,

because �(� ; �) = I =

"
1 0

0 1

#
:

We need to �nd two solutions �1(t; �) and �2(t; �) that at the time t = � have initial values [1; 0]T and

[0; 1]T to the equation

x0 = A(t)x;

We will use a general solution to the scalar linear equation x0 = p(t)x+g(t) with initial data x(�) = x0
calculated using the primitive function P(t; �) =

R t
�
p(s)ds of p(t) :

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; s)g g(s)ds
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A derivation of this formula using the integrating factor idea follows.

x0 = p(t)x+ g(t); x0 = x(�)

P(t; �) =

Z t

�

p(s)ds

exp f�P(t; �)gx0 = exp f�P(t; �)g p(t)x+ exp f�P(t; �)g g(t)
exp f�P(t; �)gx0 � p(t) exp f�P(t; �)gx = exp f�P(t; �)g g(t)
exp f�P(t; �)gx0 + (exp f�P(t; �)g)0 x = exp f�P(t; �)g g(t)

[exp f�P(t; �)gx]0 = exp f�P(t; �)g g(t)Z t

�

[exp f�P(s; �)gx(s)]0 ds =

Z t

�

exp f�P(s; �)g g(s)ds

exp f�P(t; �)gx(t)� exp f�P(� ; �)gx0 =

Z t

�

exp f�P(s; �)g g(s)ds

exp f�P(t; �)gx(t)� exp f0gx0 =

Z t

�

exp f�P(s; �)g g(s)ds

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; �)g exp f�P(s; �)g g(s)ds

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; �)� P(s; �)g g(s)ds

P(t; �)� P(s; �) =

Z t

�

p(z)dz �
Z s

�

p(z)dz =

Z t

�

p(z)dz +

Z �

s

p(z)dz =Z t

s

p(z)dz = P(t; s)

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; s)g g(s)ds;

x(�) = x0

In the equation

x01 = t x1

the coe¢ cient p(t) = t, therefore P(t; �) =
R t
�
s ds =

�
1
2
s2
���t
�
= 1

2
(t2 � � 2) and the solution

x1(t) = exp(
1

2

�
t2 � � 2

�
)x1(�):

The second equation

x02 = t x2 + x1

is similar but inhomogeneous:

x2(t) = exp(P(t; �))x2(�) +
Z t

�

exp(P(t; s))x1(s)ds:
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Substituting P(t; �) = 1
2
(t2 � � 2) we conclude that exp(1

2
(t2 � � 2))x2(�) +

R t
�
exp(1

2
(t2 � � 2))x1(�)ds

x2(t) = exp(
1

2

�
t2 � � 2

�
)x2(�) +

Z t

�

exp(
1

2

�
t2 � s2

�
) exp(

1

2

�
s2 � � 2

�
)x1(�)ds

= exp(
1

2

�
t2 � � 2

�
)x2(�) +

Z t

�

exp(
1

2

�
t2 � � 2

�
)x1(�)ds

And

x2(t) = exp(
1

2

�
t2 � � 2

�
)x2(�) + exp(

1

2

�
t2 � � 2

�
)(t� �)x1(�):

The fundamental matrix solution �(t; �) has columns that are solutions to x0 = A(t)x with initial data -

that are columns in the unit matrix:

"
1

0

#
and

"
0

1

#
,

Taking x1(�) = 1 and x2(�) = 0 we get x1(t) = exp(12 (t
2 � � 2)) with x2(t) = exp(12 (t

2 � � 2))(t� �)
Taking x1(�) = 0 and x2(�) = 1 we get x1(t) = 0 with x2(t) = exp(12 (t

2 � � 2)) and the fundamental
matrix solution in the form

�(t; �) = exp(
1

2

�
t2 � � 2

�
)

"
1 0

t� � 1

#
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0.3 Group properties of transition matrix. Chapman - Kolmogorov rela-

tions.

The transition matrix �(t; �) de�nes a simple expression for the transition mapping '(t; � ; �); that maps
initial data � at time � into the value of the solution of I.V.P. '(t; � ; �) = x(t) = �(t; �)� of the system at

time t.

In the case of linear systems a simpler expression for translation properties of the transition mapping

can be formulated.

�(t; �)� = �(t; �) [�(�; �)�]

The proof is repeated here for convenience.

Let us consider two consequtive solutions x(t) = �(t; �)� and y(t) = �(t; �) (�(�; �)�) of the equation

x0 = A(t)x(t), that continue each other in the time point t = � where the second solution y(t) attains the

initial state taken in the point where the �rst solution x(t) arrives at time t = �.

Together with the uniquness of solutions, this consideration leads to the group property of the transition

mapping and the transition matrix. The group property means that moving the system governed by the

equation x0(t) = A(t)x(t) from time � to time t is the same as to move it �rst from time � to time � (blue

curve) and then to move it without break from time � to time t (red curve)

�(t; �)� = �(t; �) [�(�; �)�]

2

1

0

-1

-2

2.5
2

1.5
1

0.5
0

3
2.5

2
1.5

1
0.5

0

tt

Point out that these two "movements" do not need to go both in the positive direction in time as it is

in the picture. One of these movements (or both) can go backward in time. Another observation is that

the linearity of the system was not essential for this reasoning, only the uniqueness of solutions.

We have proven (almost) the following theorem.

Corollary 2.6, p.29, L&R (Chapman - Kolmogorov relations)
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For all t, �, � 2 J

�(t; �) = �(t; �)�(�; �); (5)

�(t; t) = I;

�(� ; t)�(t; �) = �(� ; �) = I

�(� ; t) = (�(t; �))�1 (6)

Proof.
The �rst statement has been proven already. The second follows from the integral equation for the

transition matrix. The third one follows from the �rst two. We apply the �rst statement �(t; �) �(� ; t) =

�(t; t) = I therefore �(� ; t) is the right inverse of �(t; �). The same argument for this expression with t

and � changed their roles leads to that �(� ; t) is the left inverse of �(t; �).�
Example.
Remeber that in the case with autonomous systems x0 = Ax, the transition matrix is �(t; �) =

exp ((t� �)A) :
Therefore in this case the Chapman - Kolmogorov relations follow from properties of matrix exponent:

exp f(t� �)Ag = exp f(t� �)Ag exp f(� � �)Ag

0.4 Non-homogeneous linear systems.

We consider the I.V.P. for non-homogeneous linear system

x0(t) = A(t)x(t) + b(t); x(�) = �; (� ; �) 2 J � RN(J � CN)

We suppose here that A : J ! RN�N (or CN�N) is continuous or piecewise continuous and denote
by �(t; �) the transition matrix function generated by A(t). We rewrite the I.V.P. for the system also in

integral form

x(t) = � +

Z t

�

(A(�)x(�) + b(�)) d�;

that allows to consider continuous solutions in the case when A is only peacewise continuous. In this case

solutions satisfy the di¤erential form of the problem in between of discontinuties of A.

Theorem 2.15, p. 41 L&R
Let (� ; �) 2 J � RN :The function

x(t) = �(t; �)� +

Z t

�

�(t; �)b(�)d�;

is a unique solution to the I.V.P. above.

Proof can be found in lecture note from 2021 or in the course book.
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1 Systems with periodic coe¢ cients: Floquet theory

We consider here linear homogeneous systems of ODE�s with J = R and a continuous or piecewise contin-

uous matrix A : R! RN�N (or CN�N); with period p > 0:

x0(t) = A(t)x(t); A(t+ p) = A(t); 8t 2 R

Let � be a transition matrix generated by a periodic A(t).

Shifting invariance property.(formula 2.31, p. 45 in L.R.)
We are going to prove an important shifting invariance property of this transition matrix function,

namely that

�(t+ p; � + p) = �(t; �) (7)

Structure of the transition matrix for a time interval including a �nite number of periods.
(formula 2.32, p. 45 in L.R.)
(Motivation to introducing the monodromy matrix)
Another property specifying further how the periodicity of the system in�uences the structure of the

transition matrix �(t; �) is expressed by the following relations:

�(t+ p; �) = �(t; 0) [�(p; 0)] �(0; �) (8)

�(t+ n p; �) = �(t; 0) [�(p; 0)]n�(0; �) (9)

for any (t; �) 2 R� R.
De�nition of the Monodromy matrix
The transition matrix �(p; 0) for a periodic linear system with period p is called the monodromy

matrix (this standard notion is not used in the course book)
Proof of the shifting invariance property.
This �rst property becomes untuitively clear after followig arguments:

The matrix �(t; �) satis�es the equation

@

@t
�(t; �) = A(t)�(t; �)

with initial condition ;�(t; �)jt=� = I.
The matrix �(t+ p; � + p) satis�es the equation

@

@t
�(t+ p; � + p) = A(t+ p)�(t+ p; � + p)

with initial condition ; �(t+ p; � + p)jt=� = I :
Now we observe (!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!)
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that A(t) = A(t+ p). Substituting it in the second equation we get the equation

@

@t
�(t+ p; � + p) = A(t)�(t+ p; � + p)

with the same initial condition;�(� + p; � + p) = I on the interval t 2 [� ; t):
It implies that �(t; �) and �(t+p; �+p) satisfy in fact the same equation with the same initial conditions

�(t+ p; � + p)jt=� = I . The uniquness of solutions implies that they must be equal: �(t + p; � + p) =

�(t; �):

A prove using the integral form of the equation is presented in the course book.�

Proof of the structure formula for the transition matrix for a periodic system
The proof is based on a combination of the shifting property with the Chapman-Kolmogorov relations.

�(t+ p; �)
Shift:
= �(t; � � p) Ch:�Kol:= �(t; 0)�(0; � � p) Shift= �(t; 0)�(p; �)

Ch:�Kol:
= �(t; 0)�(p; 0)�(0; �)

The second equality for the shift n p in n periods p in time is derived by the repetition of the last

argument and induction

�(t+ np; �)
Ch:�Kol:
= �(t+ np; � + np)�(� + np; �)

Shift
= �(t; �)�(� ; � � np)

Ch:�Kol:
= �(t; �)�(� ; 0)�(0; � � np) Ch:�Kol:= �(t; 0)�(np; �)

Ch:�Kol:
= �(t; 0)�(np; 0)�(0; �)

and from the observation that

�(np; 0)
Ch:�Kol_n_times

= �(np; np� p):::�(kp; kp� p):::�(2p; p)�(p; 0) shifting_for_each_term= [�(p; 0)]n

that follows from the Chapman-Kolmogorov relation and from the fact that �(t; 0) satis�es the same

equation on each interval [kp; (k + 1) p], (shift invariance property) because A(t) = A(t + p) is a periodic
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matrix with period p. It implies the desired formula:

�(t+ n p; �) = �(t; 0) [�(p; 0)]n�(0; �)

Lecture 20
Summary

on transition matrix for periodic systems

1. Shifting property of transition matrix for periodic systems:

�(t+ p; � + p) = �(t; �)

2. Structure formula for transition matrix of periodic systems

�(t+ p; �) = �(t; 0) [�(p; 0)] �(0; �) (10)

�(t+ n p; �) = �(t; 0) [�(p; 0)]n�(0; �) (11)

3. Picture of the transition mapping '(t; � ; �) = �(t; �)� generated by the transition matrix �(t; �) to

a di¤erential equation x0(t) = A(t)x(t), with periodic coe¢ cients A(t+ p) = A(t)

Example illustrating ideas of Floquet theory on a scalar linear equation.
Consider the following scalar linear equation with periodic coe¢ cient A(t) = (sin(4t)� 0:1) with period

p = 0:5�:

dx

dt
= (sin(4t)� 0:1)x;

We will �nd the monodromy matrix for this simple equation and demonstrate all objects related to the

Floquet theorem that follows.

The exact general solution is:

x(t) = C exp (�0:25 cos (4t)� 0:1t)

with arbitrary constant C; can be found by the method with integrating factor.
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�0:25 cos (4t) � 0:1t is the primitive function of the coe¢ cient (sin(4t)� 0:1) in front of x in the
equation.

To �nd the solution equal to 1 at t = 0 that is the transition "matrix" in the scalar case, we calculate

the expression exp (�0:25 cos (4:0t)) e�0:1tjt=0 = 0:778 8 and choose C = 1
0:778 8

in the expression for the

general solution x(t).

The transition "matrix" is:

�( t; 0) =
1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t

The period of the coe¢ cient in the system is p = 0:5� and the monodromy matrix is �( p; 0) =
�( 0:5�; 0):

�( p; 0) = 1
0:778 8

exp (�0:25 cos (4:0t)) e�0:1t
��
t=0:5�

= 0:854 64

The eigenvalue � of the (1x1) "monodromy matrix" �( p; 0) coinsides with it�s value: � = 0:854 64 < 1

and is strictly less than 1.

Consider the logarithm G = ln (�( p; 0)) of the monodromy matrix �( p; 0):

G = ln (�( p; 0)) = ln(
1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t)

����
t=0:5�

= �0:157 08

F = G
p
= �0:157 08

0:5�
= �0:1 < 0

Therefore the eigenvalue � = �0:1 of the "matrix"

F =
1

p
G =

1

p
ln (�( p; 0))

is negative.

The transition matrix to the linear homogeneous "system"

y0(1) = Fy(t)

is

exp(Ft) = exp(t
G

p
) = exp(�0:1t):

Compare black and orange graphs for exp(tG
p
) and for �( t; 0) = 1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t . Observe

that exp(tG
p
) and �( t; 0) coinside in points t = pn = (0:5�)n, n = 1; 2; 3:::

Introduce a "corrector" multiplicator �(t) introduced so that

�( t; 0) = �(t) exp

�
t
G

p

�
Observe that

�(t) =
1

0:778 8
exp (�0:25 cos (4:0t))

is a p = 0:5� - periodic function equal to 1 in all points t = pn = (0:5�)n, n = 1; 2; 3:::(red graf).
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We are going to observe soon that a similar representation of the transition matrix �( t; 0) is possible

for the transition matrix �( t; 0) of arbitrary periodic linear systems of ODEs:

15



The main idea of the Floquet theory.

The monodromy matrix �(p; 0) is a particular transition matrix that maps initial data � at time � = 0

to the state of the system x(p) after one period p. A particular property of this matrix in the case of

periodic systems is that similar mapping to the state x(t) at the time t = np equal to n periods p is just

�(n � p; 0) = [�(p; 0)]n

This property is similar to properties of autonomous linear systems where �(t; 0) = exp(At) and there-

fore

�(n � p; 0) = exp(A(n � p)) = [exp(A(p))]n = [�( p; 0)]n (12)

that follows from the factorisation property of the exponent of two commuting matrices:

exp(A+B) = exp(A) exp(B)

In the case of periodic systems this factorisation applies only for shifts in time that are integer numbers

of periods. But it is still a remarkable property. The behaviour of solutions is described by a repeated

multiplication by a constant matrix in certain time points: p, 2p, 3p, ...:

x0(t) = A(t)x(t); x(0) = �:

x(np) = [�( p; 0)]n � ; n = 0; 1; 2; :::

The �rst idea of the Floquet theory is to represent x(np) at times t = np similarly as for autonomous

systems, namely with the help of an exponent of some (unknown at the moment) constant matrix F times

the time argument: t = np.

x(np) = [�( p; 0)]n � = exp(npF )� = [exp(pF )]n �

It means that the matrix F in such representation must satisfy the relation

�( p; 0) = exp(pF ):

Therefore the matrix pF must be something like the logarithm of the monodromy matrix:

pF = log(�( p; 0))

De�nition. A matrix G 2 CN�N is called a logarithm of the matrix H 2 CN�N if

H = exp(G)

We write in this case G = log(H).

16



We are going to prove soon that for any non-singular matrix H there is a logarithml log(H) in this

sense. Point out that the monodromy matrix �( p; 0) is always non-singular, because columns in a transition

matrix �( t; 0) are always linearly independent (check yourself: why?)

The logarithm of a matrix is not uniquely de�ned in the same way as it is not unique for complex and

real numbers z:

ln(z) = ln(jzj) + i arg(z) (13)

because the argument arg(z) of a complex number is de�ned only up to 2�k, k = �1;�2; ::::
One can choose a unique branch for the logarithm function, called the principle logarithm or Log (z)

by choosing the argument in the last formula (13) for example only in the interval (��; �].
We will suspend the discussion of matrix logarithm now and will consider �rst an application of it to

the analysis of solutions to periodic linear systems of ODEs.

The main idea in the Floquet theory is the "approximation" of the transition matrix �( t; 0) for a

periodic linear system with matrix A(t) = A(p + t) by the transition matrix exp (t F ) for an autonomous

system

y0(t) = [F ] y(t)

with the constant matrix F =
h
1
p
G
i
where

G = log(�( p; 0)) (14)

exp(G) = �( p; 0) (15)

exp(pF ) = �( p; 0) (16)

exp((np)F ) = [�( p; 0)]n = �(np; 0) (17)

�( p; 0)_is_considered_as_a_transition_matrix_for_the _autonomous_system y0(t) = [F ] y(t).

These two transition matrices coinside in points t = 0; p; 2p; 3p; :::

�(np; 0) = [�( p; 0)]n = exp ((np) [F ]) (18)

The "deviation" of �( t; 0) from exp (t F ) in intermediate points within one period can be expressed by a

factor �(t) so that

�( t; 0) = �(t) exp (tF )

�(t) = �( t; 0) exp (�tF )

The matrix function �(t) must be equal to the unit matrix I in the points t = 0; p; 2p; ::: because in these

points these two transition functions coinside by construction and exp (�tF ) is inversion of �( t; 0), see
(18).

The exact formulation of the properties of such factorization is given in the following Theorem by

Floquet.
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Theorem 2.30 , p. 53. Floquet theorem
Consider a periodic system x0(t) = A(t)x(t); with period p: A(t) = A(t+ p)

Let G 2 CN�N be a logarithm of the monodromy matrix �( p; 0).

G = log(�( p; 0))

There exists a periodic with period p piecewise continuously di¤erentiable function �(t) : R ! CN�N ,
with �(0) = I and �(t) non-singular (invertible, all eigenvalues are non-zero) for all t, such that

�( t; 0) = �(t) exp

�
t

p
G

�
, 8t 2 R (19)

Proof.
We remind the main property (8) of the monodromy matrix for � = 0:

�( t+ p; 0) = �( t+ p; p)�( p; 0) = �( t; 0)�( p; 0)

where we applied �rst the Chapman Kolmogorov relation (5) and then the shift invariance (7) of the

transition matrix function �( t; �) for a periodic linear system.

We denote 1
p
G by F for convenience, so that G = pF , and de�ne the matrix function �(t) after the

desired relation (19)

�(t) = �( t; 0) exp

�
� t
p
G

�
= �( t; 0) exp (�tF )

The matrix function �(t) is well de�ned in such a way. The problem is to show that it has desired

properties: p - periodicity and satis�es initial conditions.

We remind that �(0) = I and even �(np)= I for all n = 0; 1; 2; 3; :::because

�(np; 0) = [�( p; 0)]n = exp ((np)F )

�( t; 0) is piecewise contiuously di¤erentiable or contiuously di¤erentiable depending on if A(t) is piece-

wise continuous or continuous. Therefore �(t) has the same property because exp
�
� t
p
G
�
is continously

di¤erentiable. �(t) is also invertible for all t as a product of two invertible matrices �( t; 0) and exp (�tF ).
We check now that �(t) is p - periodic, namely that �(t+ p) = �(t) for all t 2 R.

�(t+ p)
def
= �( t+ p; 0) exp (�(t+ p)F )

= �( t+ p; 0) exp (�pF ) exp (�tF ) = �( t+ p; 0)
(exp(G))�1z }| {
exp (�G) exp (�tF )

= �( t+ p; 0)

(�( p;0))�1=�( 0;p)z }| {
(exp(G))�1 exp (�tF )

We remind that exp(G) = exp(log(�( p; 0)) = �( p; 0), therefore, by Chapman-Kolmogorov relations

exp (�G) = (exp (G))�1 = �( p; 0)�1 = �( 0; p). Therefore, using the main relation for the monodromy
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matrix (??) �( t+ p; 0) = �( t; 0)�( p; 0) together with the relation exp (�G) = �( 0; p); we arrive to

�(t+ p) = �( t; 0)

�( p;p)=Iz }| {
�( p; 0)�( 0; p) exp (�tF ) = �( t; 0) (I) exp (�tF ) def= �(t);

where we also used that �( p; 0)�( 0; p) = I in the last step. Therefore �(t) is periodic with period p.�

1.1 Logarithm of a matrix. Existence and calculation.

We will formulate a theorem and give a proof to it (simpler than in the book) about the existence of a

matrix logarithm.

De�nition
The matrix G is a logarithm of matrix H or G = log(H) if exp(G) = exp(log(H)) = H:

Consider a nonsingular matrix H and it�s a canonical Jordan form J :

H = TJT�1

where T is invertible matrix. Then if there is Q 2 CN�N , such that exp(Q) = J it means that

Q = log(J); J = exp(Q)

then according to the properties of the exponent of similar matrices, and the de�nition of the matrix

logarithm

H = TJT�1 = T exp(Q)T�1 = T exp(log(J))T�1 =

= exp
�
T log(J)T�1

� def
= exp(log(H))

and

log(H) = T log(J)T�1

where we used te relation for exponent for similar matrices: that ifA = TBT�1 then exp(A) = T exp(B)T�1:

It means that to calculate the logarithm of an arbitrary matrixH it is enough to calculate the logarithm

of it�s Jordan canonical form. For H = TJT�1

log(H) = T log(J)T�1

De�nition.
We say that G is a principal logarithm G = Log(H) of the matrix H if G is a matrix logarithm of H

and

�(H) = fexp(�) : � 2 �(G)g
�(G) = fLog(�) : � 2 �(H)g
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where Log(�) is the scalar principal logarithm:

z = eLog(z); arg(Log (z)) = Im(Log (z)) 2 (��; �]:

This de�nition implies the explicit one to one correspondence between eigenvalues to H and eigenvalues

to G. Essentially the second relation is non-trivial.

Theorem:Proposition 2.29, p. 53.
If H 2 CN�N is invertible, then there exists a principle logarithm Log (H) :

Proof.
We have established above that it is enough to investigate existence of logarithm for the similar canonical

Jordan form J of the matrix H. So without loss of generality we may assume that H is a canonical Jordan

form J . Exponent of a Jordan matrix consists of exponents of it�s blocks. Therefore it is enough to

establish the existence of logarithm for each Jordan block Jj in J , j = 1; :::; s where s is the number of

distinct eigenvectors to H and Jj has size nj � nj

Jj =

26666666664

�j 1 0 ::: 0 0

0 �j 1 ::: 0 0
...

...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: �j 1

0 0 0 ::: 0 �j

37777777775
Jj = �j

�
I + 1

�j
Nj

�
where

Nj =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
From the classical Maclaurin series for log(1 + x) =

1P
p=1

(�1)p+1
p

xp valid for jxj < 1; and for exp we get

exp(log(1 + x)) = 1 + x

We will try to calculate log(Jj) = log
�
�jI

�
I + 1

�j
Nj

��
= log(�j)I + log

�
I + 1

�j
Nj

�
Point out that we use the condition that �j 6= 0!!!
We formally write the Maclaurin series for log(I + 1

�j
Nj) :

log

�
I +

1

�j
Nj

�
=

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p
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and observe that the Maclaurin series for log(1 + 1
�j
Nj) is a �nite sum because all larger powers of Nj in

the series cancel. We have therefore that

exp

�
log

�
I +

1

�j
Nj

��
= I +

1

�j
Nj

and

exp (log(�j)I) exp

�
log

�
I +

1

�j
Nj

��
=

exp

�
log(�j)I + log

�
I +

1

�j
Nj

��
= �j

�
I +

1

�j
Nj

�
= Jj

We de�ne

Gj
def
= log(�j)I +

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p
Now we check that this expression Gj is actually a matrix logarithm Gj = log (Jj) for the Jordan block Jj
by just checking that is satis�es the de�nition of the matrix logarithm. Point out that the diagonal matrix

log(�j)I commutes with any matrix. Therefore applying formula exp(log(1 + x)) = 1 + x for series for

exp(x) and log(1+ x) to similar converging series of commuting matrices we arrive to the desired relation.

exp(Gj) = exp

 
log(�j)I +

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p !

= exp (log(�j)I)) exp

 
nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p !

= (�jI)

�
I +

1

�j
Nj

�
= Jj

In the Jordan canonical form J eigenvalues stand on diagonal and are easy to control. All calculations

that we have carried out are correct because �j 6= 0. We can choose logarithms log(�j) in these calculations
as principle values of logarithm Log(�j). In this case the logarithm of Jj will be principal logarith, because

there will be one to one correspondence between eigenvalues �j to Jj and eigenvalues Log (�j) to Log (Jj)

that are diagonal elements in corresponding matrices. They will have the same algebraic multiplicity and

the same geometric multiplicity 1 (one linearly independent eigenvector for each Jordan block)

Therefore the existense of the principal logarithm is established also for J and for H; that is a matrix

similar to J . The same correspondence as above is valid for the eigenvalues to H and to Log(H) because

eigenvalues to similar matrices H and J are the same. The number of linearly independent eigenvectors

corresponding to each distinct eigenvalue (geometric multiplicity) will be also the same.�
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1.2 Floquet multiplicators and exponents and bounds of solutions to peri-

odic systems. equations.

De�nition.
Eigenvalues of the monodromy matrix �( p; 0) are called Floquet�s multipliers or characteristic

mutipliers.
A Floquet multiplier is called semisimple if it is semisimple as an eigenvalue to the monodromy matrix

�( p; 0):

De�nition.
Eigenvalues of the logarithm of the monodromy matrix are called Floquet�s exponents or charac-

teristic exponents.

Theorem 2.31, p.54 on boundedness and zero limits of solutions to periodic linear systems.
1) Every solution to a periodic linear system of ODEs is bounded on R+ if and only if the abosolute

value of each Floquet multiplier is not greater than 1 and any Floquet multiplier with absolute value 1 is

semisimple.

2) Every solution to a periodic linear system of ODEs tends to zero at t ! 1 if and only if the

absolute value of each Floquet multiplier is strictly less than 1.

Proof. (required at the exam)
By the Floquet theorem any solution x(t) to system

x0(t) = A(t)x(t); A(t+ p) = A(t), 8t 2 R (20)

satisfying initial conditions

x(�) = �

is represented as

x(t) = �( t; �)� =

�( t;0)z }| {
�(t) exp(tF )�( 0; �)� = �(t)

y(t)z }| {
exp(tF )�

= �(t)y(t)

where

F =
1

p
Log(

monodromy_matrix

�( p; 0) ); � = �( 0; �)�:

�(t) is a p - periodic continuous or piecewise continuous matrix valued function. �(t) is invertible for

all t.

We de�ne y(t) = exp(tF )� as a solution to the I.V:P. for an autonomous linear equation:

y0(t) = F y; y(0) = � (21)

y(t) = ��1(t)x(t), and x(t) = �(t)y(t). The mapping �(t) determines a one to one correspondence
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between solutions x(t) to the periodic system (20) and solutions y(t) to the autonomous system (21).The

periodicity and continuity properties of �(t) and ��1(t) imply that there is a constant M > 0 such that

k�(t)k �M and k��1(t)k �M for all t 2 R. It implies that

kx(t)k �M ky(t)k and ky(t)k �M kx(t)k

Therefore

1)kx(t)k is bounded on R+ if and only if corresponding ky(t)k = kexp(tF )�k is bounded on R+:
2) kx(t)k ! 0 when t!1 if and only if corresponding ky(t)k ! 0 when t!1:
Since Log (�( p; 0)) = G = pF , and �( p; 0) = exp(pF ) it follows that

� (�( p; 0)) = fexp(�p) : � 2 �(F )g

� (F ) =

�
1

p
Log(�) : � 2 �(�( p; 0))

�
and that algebraic and geometric multiplicities of each � 2 �(F ) coinside with those of exp(p�) 2
� (�( p; 0)) :

The following connections between the properties of Floquet multipliers and propertis of corresponding

eigenvalues to the matrix F = 1
p
Log(�( p; 0)) are direct consequences of the Euler formula for the complex

exponent and properties of complex logarithm:

Log(z) = ln(jzj) + iArg(z)
exp(z) = exp(Re z)(cos(arg z) + i sin(arg z))

jexp(z)j = exp(Re z) < 1() Re z < 0

jexp(z)j = exp(Re z) � 1() Re z � 0
jexp(z)j = exp(Re z) = 1() Re z = 0

a) The Floquet multiplier � 2 �(�( p; 0));hasj�j < 1 if and only if ReLog(�) < 0 that is if the

corresponding eigenvalue � = 1
p
Log(�) to F has ReLog(�) < 0:

b) The Floquet multiplier � 2 �(�( p; 0));has j�j � 1 if and only if ReLog(�) � 0 that is if the

corresponding eigenvalue � = 1
p
Log(�) to F has ReLog(�) � 0:

c) The Floquet multiplier � 2 �(�( p; 0)); with j�j = 1 is semisimple if and only if the corresponding
eigenvalue � = 1

p
Log(�) to F having ReLog(�) = 0 is semisimple.

Known relations between properties of solutions to an autonomous system and the spectrum of corre-

sponding matrix applied to the system y0(t) = F y and to the spectrum �(F ) of the matrix F together

with statements 1),2), a),b),c) in the present proof imply the statement of the theorem.�
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Proposition 2.20. p. 45. On periodic solutions to periodic linear systems
The system x0(t) = A(t)x(t) with p - periodic A(t) = A(t + p) has a non-zero p - periodic solution if

and only if the monodromy matrix �(p; 0) has an eigenvalue � = 1. A more general statement is also valid.

The system has a non-zero n p - periodic solution for n 2 N if and only if the monodromy matrix �(p; 0)
has an eigenvalue � such that �n = 1.�
Proof. Consider an eigenvector v corresponding to the eigenvalue �. Then v 6= 0, �(p; 0)v = �v and

[�(p; 0)]n v = �nv = 1 � v = v

We will show that the solution to the system, with initial data x(0) = v has period np. This solution

is given by the transition matrix: x(t) = �(t; 0)v. Using this representation and applying the factorisation

property of transition matrices for periodic systems we arrive to

x(t+ np) = �(t+ np; 0)v = �(t; 0) [�(p; 0)]n v = �(t; 0)v = x(t); 8t 2 R

It shows that x(t) is periodic with period n p.

Supposing that there is a periodic solution x(t + np) = x(t) and repeating the same calculation back-

wards we arrive to that x(0) = v is an eigenvector corresponding to an eigenvalue � such that �n = 1:

Carry out this backward argument as an exercise!

Examples and exercises
on periodic and general linear systems of ODEs.

Exercise. Compute the monodromy matrix for the system x0(t) = A(t)x(t) with the following periodic
matrix A(t) with period 1 and �nd conditions on � that imply that all solutions tend to zero with t!1:

A(t) =

8>>>>>><>>>>>>:

"
� 1

0 �

#
= A1; 0 � t < 1=2

"
� 0

1 �

#
= A2; 1=2 � t < 1

Solution:

The monodromy matrix �(p; 0) = �(1; 0) is expressed as (using Chapman- Kolmogorov)

�(1; 0) = �(1; 1=2)�(1=2; 0)

= exp((1� 1=2)A2) exp((1=2)A1)
exp((1=2)A2) exp((1=2)A1)

Here exp(tA1) = exp(�t)

"
1 t

0 1

#
, exp(tA2) = exp(�t)

"
1 0

t 1

#

We derive an explicit expression for�(1; 0) �(1; 0) = exp(1
2
�+1

2
�)

"
1 0

1=2 1

#"
1 1=2

0 1

#
= exp(�)

"
1 1

2
1
2

5
4

#
,
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det

"
1 1

2
1
2

5
4

#
= 1; Tr

"
1 1

2
1
2

5
4

#
= 2:25.

characteristic polynomial p(�) = �2 � 9
4
�+ 1

eigenvalues: �1 = 9
8
�
q�

9
8

�2 � 1 = 9
8
� 1

8

p
17 > 0; �2 =

1
8

p
17 + 9

8
> 0 and are simple.

Find conditions on � such that all solutions will be bounded

The condition for boundedness of all solutions is exp(�) j�2j � 1 or exp(�)18
�p
17 + 9

�
� 1 because �2

is larger in absolute value.

It can be reformulated by taking logarithm of left and right hand sides as � � ln(8) � ln(
p
17 + 9) �

�0:494 93:
All solutions will tend to zero if and only if the strict inequality is valid � < ln(8) � ln(

p
17 + 9) �

�0:494 93
�

Abel - Liouville�s formula and it�s applications

Consider a homogeneous linear system of ODEs x0(t) = A(t)x(t) and N solutions y1(t); y2(t),...,yN(t)

to it. Consider the matrix Y (t) having these solutions as it�s columns:

Y (t) = [y1(t); y2(t); :::; yN(t)]

De�nition.
The determinant

w(t) = detY (t) = det [y1(t); y2(t); :::; yN(t)]

is called Wronskian associated with solutions y1(t); y2(t); :::; yN(t).

Proposition 2.7 part (2) - Abel - Liouville�s formula.
Wronskian

w(t) = det [y1(t); y2(t); :::; yN(t)]

associated with arbitrary solutions y1(t); y2(t),...,yN(t) to the system x0(t) = A(t)x(t) satis�es the following

relations:

w(t) = det�(t; �)w(�)

In points t where A(t) is continuous it satis�es the di¤erential equation

w0(t) = tr(A(t))w(t)

and therefore with initial value for w(�) at time � :

w(t) = w(�) exp

�Z t

�

tr(A(s))ds

�
(22)

for all t 2 J .�
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Corollary 2.33, p. 59
We consider a periodic linear system x0(t) = A(t)x(t), A(t+ p) = A(t).

If
R p
0
tr(A(s)ds has a positive real part, then the equation has at least one solution x(t) that is un-

bounded, or expressing it more explicitly, the upper limit of it�s norm is in�nite: lim supt!1 kx(t)k =1:
�
Proof.
We remind that the transition matrix �(t; �) sati�es the initial value problem:

d

dt
�(t; �) = A(t)�(t; �)

�(� ; �) = I

Arbitrary solution to the initial problem x0(t) = A(t)x(t); x(�) = � will be expressed as

x(t) = �(t; �)�

According to Abel - Liouville�s formula and considerations before

det(w(t; 0) ) = det(w(0; 0)) exp

�Z t

0

tr(A(s)ds

�
It implies for �(t; 0)

jdet(�(t; 0) )j =
����det( =I

�(0; 0)) exp

�Z t

0

tr(A(s)ds

����� =����exp�Z t

0

tr(A(s)ds

����� =

����exp�Re�Z t

0

tr(A(s)ds

������
Therefore, for t = p we get that if Re

�R p
0
tr(A(s)ds

�
> 0 then

jdet(�(p; 0) )j =
����exp�ReZ p

0

tr(A(s)ds

����� > 1:
On the other hand det(�(p; 0)) is a product of eigenvalues �k to the monodromy matrix �(p; 0) with

multiplicities mk

It follows from the structure of the similar Jordan matrix

�(p; 0) = T�1JT

det�(p; 0) = det(T )�1 det(T ) det(J) = det(J)

jdet(�(p; 0)j =
sY
k=1

j�kj
mk > 1
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To have this product greater than 1 we must have at least one eigenvalue �p with
���p�� >1. According

to one of Floquet theorems, all solutions to a periodic system of ODEs are bounded if and only if all

eigenvalues to the monodromy matrix have absolute value j�j � 1 and those with j�j = 1 are semisimple.
Therefore existence of an eigenvalue with j�j > 1 implies existence of a solution x(t) that is not bounded
and therefore lim supt!1 kx(t)k =1. �
For example we can choose the initial condition x(0) = vp with vp being the eigenvector to �(p; 0)

corresponding to the eigenvalue
���p�� > 1:Then the solution

x(t) = �(t; 0)vp

Let_tn = np

�(np; 0)vp = [�(p; 0)]n vp =
�
�p
�n
vp

with
���p�� > 1. Therefore x(tn) = ��p�n vp, and

kx(tn)k =
���p��n kvpk !

n!1
1

and lim supt!1 kx(t)k =1.
�
We give also a geometric interpretation of this result. Consider a unite cube build on standard base

vectors e1; :::; eN at time t = 0. Consider how the volume Vol(t) of this cube changes under the action

of the linear transformation by the transition matrix �(t; 0) of our periodic system. Point out that I =

[e1; :::; eN ] :It implies that the �gure of interest is the parallelepiped build on columns of the transition

matrix �(t; 0). One of the main properties of periodic system is that �(np; 0) = [�(p; 0)]n. Therefore

Vol(np) = jdet([�(p; 0)]n )j = jdet([�(p; 0)] )jn =
�
exp

�
Re

�Z p

0

tr(A(s)ds

���n
If Re

�R p
0
tr(A(s)ds

�
> 0 then exp

�
Re
�R p
0
tr(A(s)ds

��
> 1. It implies that

lim
n!1

Vol(n p) =1

Therefore along the sequence of timesft = np; n = 1; 2; 3; :::g we obsere that Vol(n p) is unbounded.
It implies also that

lim sup
t!1

kVol(t)k =1

The fact that limn!1Vol(n p) = 1 implies that the diameter D(n p) of the parallelepiped build on

columns of �(n p; 0) calculated at these discrete time points, is also unbounded limn!1D(n p) =1: It in
turn means that there should be a solution that has the property limn!1 kx(np)k =1:�
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