
Main ideas and tools in the course on ODE

1. Integral form of I.V.P. to ODEs

2. Grönwall�s inequality for showing uniqueness and continuity with respect to data.

3. Transition mapping. Orbits of solutions, phase portrait.

4. Generalised eigenspaces of matrices. Basis of generalized eigenvectors.

5. Jordan form of matrices. Functions of matrices, in particular exponent and logarithm.

6. Transition matrix. Chapmen-Kolmogorov relations.

7. Monodromy matrix. Floquet theory for periodic linear systems.

8. Stability and instability of equilibrium points.

9. Linearization and Grobman - Hartman theorem. (i¤ Re(�) 6= 0)

10. Lyapunov functions (for stability, instability, and for �nding positively invariant sets).

11. ! - limit sets. LaSalle�s invariance principle for hunting ! - limit sets "living" in
V �1f (0).

12. Idea of solving integral equations by iterations (Banach�s contraction priniple).

Examples of typical problems

Example on an application of Jordan matrix

For one particular solution of the system dx(t)
dt
= Ax(t) with a real matrix A; the �rst

component has the form x1 = t
2 + t sin (t) :

1. Which smallest size can the real matrix A have? (4p)

Solution.

The term t sin(t) in the solution is a sign that the Jordan form of the matrix A has
a Jordan block corresponding to the eigenvalue �1 = i that has multiplicity at least

2, for example
�
i 1
0 i

�
or multiplicity 3 :

24 i 1 0
0 i 1
0 0 i

35 etc. On the other hand te
matrix A is real and therefore it�s characteristic plolynomial has real coe¢ cients and
therefore all complex eigenvalues must appear as conjugate pairs: the matrix A must
have the eigenvalue �2 = �i havingthe same multiplicity as �1, at least 2 and with
corresponding Jordan block

�
�i 1
0 �i

�
.
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The presence of the term t2 in one component of a solution shows that the matrix A
must have the eigenvalue � = 0 with multiplicity at least 3 with correspoding Jordan

block

24 0 1 0
0 0 1
0 0 0

35.
All these observations imply that the real matrix A must have dimensions at least 7�7,
because the sum of dimensions of sizes of Jordan blocks is at least 2 + 2 + 3 = 7.�

Example of transition mapping.
Example 4.33 of a transition map.
G = R; f : G! R; f(x) = x2; for � = 0; x(t) � 0:
Initial data x(0) = �

dx

dt
= x2;

Z
dx

x2
=

Z
dt;

�1
x
= t+ C

�1
x
= t� 1

�
; �1

x
=
t� � 1
�

x(t) =
�

(1� t�)
The maximal interval for � = 0; x(t) � 0: is I� = R
The maximal interval for � > 0, I� = (�1; 1=�):
The maximal interval for � < 0, I� = (1=�;1)

'(t; �) =
�

(1� t�) ; D(') = f(t; �) 2 R� R; t� < 1g

The domain D of ' is an open set. The function '(t; �) is continuous and even locally
Lipschitz:
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Example of a transition mapping and maximal solutions ( a bit more compli-
cated).
1) Solve the initial value problem

_x = t x3; x (1) = �

and �nd maximal intervals for solutions. Give a sketch of the domain for the transfer mapping
'(t; 1; �)=x(t) in the (t; x) plane.
2) Can one conclude which maximal interval have solutions to the similar equation

_x = t3x

without solving it?
Solution.
1) It is the equation with separable variables.

dx

dt
= tx3; x (1) = �Z

dx

x3
=

Z
tdt

�1
2x2

=
t2

2
� C

C =
t2

2
+

1

2x2
; C =

1

2
+

1

2�2
=
1 + �2

2�2

�1
2x2

=
t2

2
� 1 + �

2

2�2

�1
2x2

=
�2t2

2�2
� 1 + �

2

2�2
=
�2t2 �

�
1 + �2

�
2�2

x2 =
�2�

1 + �2
�
� �2t2

=
1�

1 + �2
�
=
�
�2
�
� t2

x =

s
1�

1 + �2
�
=
�
�2
�
� t2

;
�
1 + �2

�
=
�
�2
�
� t2 > 0; � > 0

x = �
s

1�
1 + �2

�
=
�
�2
�
� t2

;
�
1 + �2

�
=
�
�2
�
� t2 > 0; � < 0

x � 0; � = 0; �equilibrium; t 2 R�
1 + �2

�
=
�
�2
�
> t2; t 2

�
�
q�
1 + �2

�
=
�
�2
�
;
q�
1 + �2

�
=
�
�2
��
OPEN !!!

The maximal intervals for these solutions are open in accordance with the general theory.
One solution x � 0 is de�ned on the whole R. We draw boundaries of the domain for
'(t; 1; �).
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Example of an equation with "eternal" solutions.
The equation _x = t3x is de�ned on R � R and the right hand side satis�es on any

compact time interval [�R;R] , R > 0 the estimate jt3xj � R3(1+ jxj) where the right hand
side rises linearly with respect to jxj : It implies that the maximal existence interval for all
solutions to this equation is R.
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Estimating Lyapunov functions V and
their derivatives Vf = rV � f along trajectories.

Investigation of the sign of functions V and Vf = rV � f.

Choosing a Lyapunov�s function for stability analysis: it must be positive de�nite: V (0) =
0; V (x) > 0, x 6= 0.
This property lets to use some of the level sets also as boundaries for 1) positively invariant

sets and 2) regions (or domains) of attraction for asymptotycally stable equilibrium points.
(For instability analysis it is enough to �nd a test function V such tat it is positive

arbitrarily close to the equilibrium point in the origin, for example on a line through the
origin or in a cone with the vertex in the origin).
The second step in �nding Lyapunovs functions is consideration of the sign of the function

Vf (x) = rV � f(x). This �nction gives the rate of change for V (x) trajectories x(t) of the
di¤erential equation x0 = f(x) without solving the equation, because d

dt
V (x(t)) = rV �

f(x(t)).

The choice of test functions

1. The simplest choice of a test function V for using in Lyapunovs theorems is
V (x; y) = x2+y2 having level sets being circles around the origin. It is often our �rst choice.
Sometimes test functions like V (x; y) = ax2 + bxy + cy2 with inde�nite terms xy can be
convenient if they are positive de�nite.

2. Test functions as a sum of kinetic and potential energy.One dimensional
Newton equation. First integrals
For systems in the form

x0 = y;

y0 = �ay � g(x)

de�ned for all (x; y) 2 R2 equivalent to the Newton equation

x00 = �ax0 � g(x);

with potential force �g(x) it is natural and optimal to choose a test function as a sum of
the kinetic energy 1

2
y2 and G(x) =

R x
0
g(s)ds:

V (x; y) =
1

2
y2 +

Z x

0

g(s)ds

If the force is an odd function such that xg(x) > 0; x 6= 0; and g(0) = 0 this test function
V (x; y) will be positive de�nite in some region around the origin.
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The derivative Vf of V along trajectories for the friction force equal to �ay, a > 0

(rV � f) (x; y) =

�
@

@x
V

�
f1 +

�
@

@y
V

�
f2

= g(x)y + x (�g(x))� ay2 = �ay2 � 0

The Lyapunov stability theorem would imply that the origin is a stable equilibrium point.
Depending on how the potential G(x) =

R x
0
g(s)ds behaves and on the position of other

equilibrium points (zeroes of the function g(x)), one can �nd a region of attraction bounded
by a level set of V that includes only one equilibrium point.
One can use the same idea in the case when the friction force in the equation above has

the form: �a�(y) with �(y)y > 0;
3. Test functions as a higher order polynomial arbitrary even powers and

with arbitrary coe¢ cients.
A �exible choice of a test function V (x; y) can be

V (x; y) = axm + byn

with arbitrarty exponents m;n and arbitrary coe¢ cients a; b > 0 that are chosen after
the calculation of Vf (x; y) so that Vf (x; y) � 0 or Vf (x; y) � 0 for (x; y) 6= (0; 0).
Example: V (x; y) = x2 + xy + 2y2 . Level sets of such a test function will be ellipses

with the axis rotated with respect to the coordinate system. The Cauchy inequality

jxyj � 1

2

�
x2 + y2

�
helps to show that this test function is positie de�nite. Another way to show is to analyse
V (x; y) as a quadratic form.
A more general Young inequality

jabj � ap

p
+
bq

q
;

1

p
+
1

q
= 1; p; q > 1

can be useful for investigating polynomials of higher degree in f :

This property V (x) > 0, x 6= 0, V (0) = 0 is a condition in the theorem by Lyapunov on
stability. It implies i particular that level sets of V close to the origin are closed curves.
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Analysis of Vf

We like to have Vf = rV � f(x) negative de�nite Vf (x) < 0 or at least rV � f(x) � 0 for
x 6= 0.
Here f is the right hand side ("velocity" ) in the di¤erential equation of interest: x0 =

f(x): It makes d
dt
(x(t)) = rV � f(x(t))� showing how the test function V changes along

trajectories x(t).

Analysis of V �1f (0)

After calculating Vf (x) we check the set V �1f (0) where V (x) = 0: Why it is interesting?
The La Salle�s invariance principle states that all ! - limit sets of trajectories x(t) inside

the domain where rV � f(x) � 0 is valid belong to the set V �1f (0) and they belong even to
a smaller part of it that is the maximal invariant subset in V �1f (0):
How to apply La Salle�s invariance principle ?
i) The set V �1f (0) is easy to identify, as a set of zeroes to Vf (in plane in most of our

examples). It is usually one or both coordinate axes.
ii) The maximal invariant set inside V �1f (0) (in the plane it will be a set of curves) is easy

to check invariant sets just by looking on velocities (values of f(x; y)) on the set V �1f (0)

and checking if they go along curves forming V �1f (0) or they go across.
It implies in particular that if in addition to the inequality rV � f(x) � 0 the

set V �1f (0) includes only an invariant set consisting of the origin, then, the origin
is asymptotically stable equilibrium.
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Example.

Consider the following system of ODE:
�
x0 = �x� 2y + xy2
y0 = 3x� 3y + y3 .

Show asymptotic stability of the equilibrium point in the origin and �nd the region of
attraction for that.
Hint: applying Lyapunovs theorem, use the elementary inequality

jxyj � 1

2

�
x2 + y2

�
to estimate possible inde�nite terms with xy in the expression for Vf (x; y):

Solution. Choose a test function V (x; y) = 1
2
(x2 + y2)

Vf = rV � f = x(�x� 2y + xy2) + y (3x� 3y + y3) = xy � x2 � 3y2 + y4 + x2y2
= �x2 (1� y2)� y2 (3� y2) + xy

indefinite_term!
� �x2 (1� y2)� y2 (3� y2) + 0:5x2 + 0:5y2

We apply the inequality 2xy � (x2 + y2) to the last term and collecting terms with x2

and y2 arrive to the estimate
Vf � �x2 (0:5� y2)� y2 (2:5� y2)
It implies that Vf < 0 for (x; y) 6= (0; 0) and jyj < 1=

p
2.Therefore the Lyapunof function

V is "strong" and therefore the origin is asymptotically stable.
The region of attraction is bounded by the largest level set of V - a circle having the

center in the origin that �ts to the domain jyj < 1=
p
2, namely the circle: (x2 + y2) < 1=2.

The second idea for choosing Lyapunov functions is choice of V of polynomilas
with arbitrary even powers and arbitrary coe¢ cients.
Another more clever choice of a test function as

V (x; y) = axm + byn

in particular V (x; y) = 3x2 + 2y2 works in this particular case:
Vf = 6x(�x � 2y + xy2) + 4y(3x � 3y + y3) = 4y4 � 12y2 � 6x2 + 6x2y2 = �4y2

(3� y2)� 6x2 (1� y2) < 0
for jyj < 1, therefore the ellipse 3x2+2y2 < 2 that �ts into the stripe jyj < 1 in the plane

is a region of attraction for the asymptotically stable equilibrium in the origin.
One can also observe the asymptotic stability of the origin here by linearization with

variational matrix

A =

�
�1 �2
3 �3

�
, with characteristic polynomial: �2 + 4� + 9 = 0, and calculating

eigenvalues: �i
p
5�2; i

p
5�2 with Re� < 0. But linearization gives no information about

the domain of attraction.
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Problem on stability of equilibrium points
and on domains of attraction.

Consider the following system of ODEs.
�
x0 = 1� xy
y0 = x� y3

Find all equilibrium points and investigate their stability. Find domains of attraction for
possible asymptotically stable equilibrium points. (4p)
Solution.
Equilibrium points are (1; 1) and (�1;�1) can be found by substitution. x = y3, 1 =

xy = y4.

Jacoby matrix of the right hand side is J(x; y) =
�
�y �x
1 �3y2

�
; J(1; 1) =

�
�1 �1
1 �3

�
;

J(�1;�1) =
�
1 1
1 �3

�
. det (J(1; 1)) = 4, tr(J(1; 1)) = �4. Therefore the equilibrium

point (1; 1) is asymptotically stable.
det (J(�1;�1)) = �4. Therefore the linearized around (�1;�1) system has a saddle

point and the equilibrium point (�1;�1) is unstable.
We shift the origin of the coordinate system into the point (1; 1) by introducing new

variables u = x� 1; v = y � 1 and x = u+ 1, y = v + 1.�
u0 = �u� v � uv
v0 = u� 3v � 3v2 � v3

Consider a test function E(u; v) = 1
2
(u2 + v2)

d

dt
E(u(t); v(t)) =

�
u
v

�
�
�
�u� v � uv
u� 3v � 3v2 � v3

�
=

= �u2 � uv � u2v + uv � 3v2 � 3v3 � v4 =
= �u2 (1� v)� 3v2(1 + v + v2)| {z }

>0

< 0

if v < 1; (u; v) 6= (0; 0)

The largest circle in (u; v) plane satisfying the condition v � 1 has radius 1. Therefore
the circle of radius 1 around the equilibrium point (1; 1) is the domain of attraction for the
asymptotically stable equilibrium (1; 1) of the original system of ODEs.�
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Application of Poincare - Bendixson theorem

The generalized Poincare-Bendixson�s theorem gives a complete description
of possible types of ! - limit sets in the plane R2:
Theorem (generalized Poincare-Bendixson)
LetM be an open subset of R2 and f :M ! R2 and f 2 C1. Fix � 2M and suppose that

the closure of 
(�) 6= ;, is compact, connected and contains only �nitely many equilibrium
points.
(i) 
(�) is an equilibrium point
(ii) 
(�) is a periodic orbit
(iii) 
(�) consists of �nitely many �xed points fxjgand non-closed orbits  such that !

and � - limit points of  belong to fxjg.
In practice the only reliable way of applying the Poincare-Bendixson theorem is to �nd

a compact positively invariant set K �M such that � 2 K.
Then according to the Main theorem about ! - limit sets any solution with orbit O+ in

the compact K will have a non-empty compact ! - limit set 
(�) in K.
If in addition there are no equilibrium points in K, then the Poincare-Bendixson theorem

implies that 
(�) is an orbit of a perioduic solution.

Finding a positive invariant set for using Poincare - Bendixson
theorem and

testing the absence of equilibrium points in a positive invariant
set.

We try to �nd an ring shaped compact set K that is positively invariant and need to
check three conditions:
i) The outer boundary of the ring (using a level set of a test function, or a polygon shaped

domain testing velosities on each segment of it�s boundary)
ii) The inner boundary of the ring (using a level set of a test function, or linearization

for identifying a repeller inside a large postively invariant set by applying the Grobman -
Hartman theorem)
iii) Show that the found compact positively invariant ring shaped set includes no equi-

librium points. (this condition is often missed by students)
Then we can conclude that any solution starting with � 2 K, will have the orbit O+(�)

in the compact K and will have a non-empty compact ! - limit set 
(�) in K. This ! - limit
set must be a periodic orbit according to Poincare - Bendixson theorem.
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Example.

Consider the following system of ODEs.
�
x0 = y
y0 = �x� y [ln (x2 + 4y2)] :

Show that this system has a non-trivial periodic solution. (4p)
Point out that the origin is outside the domain of the equation.
Solution.
Consider the test function E(x; y) = 1

2
(x2 + y2)

d
dt
E(x(t); y(t)) = Ef (x; y) = rE � f(x; y) =

�
x
y

� �
y
�x� y [ln (x2 + 4y2)]

�
= �y2 [ln (x2 + 4y2)]

�
� 0 0 < x2 + 4y2 < 1
� 0 x2 + 4y2 > 1

The boundary curve separating domains with di¤erent signs of x2 + 4y2 = 1

1.2510.750.50.250-0.25-0.5-0.75-1-1.25

1.25

1

0.75

0.5

0.25

0

-0.25

-0.5

-0.75

-1

-1.25

x

y

x

y

is the ellipse with halv axes 1 and 1=2 i the x - direction with center in the origin. Therefore
any circle with the center in the origin inside this ellipse is never entered by a trajectory.
Similarly any circle with the center in the origin outside this ellipse is never left by a tra-
jectory. Such two circles build an annulus that is a compact positively invariant set for this
system of ODEs.
For example an annulus 1=4 � x2 + y2 � 1 satis�es this conditions. This annulus

contains no equilibrium points, because the origin is the only equilibrium point. The compact
positively invariant set R must include at least one !� limit set 
(�): R does not include
any equilibrium point and according to Poincare-Bendixson theorem this !� limit set 
(�)
must be the orbit of a periodic solution.�

1.
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Example. Show that the following system of ODEs has a periodic solution.�
x0 = x� 2y � x (2x2 + y2)
y0 = 4x+ y � y (2x2 + y2) (4p)

Solution. Consider the following test function: V (x; y) = 2x2 + y2. Denoting the right
hand side in the equation by vectorfunction F (x; y) we conclude that
Vf = rV �f = 4x2�8xy�4x2 (2x2 + y2)+8xy+2y2�2y2(2x2+y) = 2 (1� (2x2 + y2)) (2x2+

y2):
It implies that the elliptic shaped ring: R = f(x; y) : 0:5 � (2x2 + y) � 2g is a positive

invariant compact set for the ODE, because velocity vectors are directed inside of this ring
both on it�s outer and inner boundaries ( rV � F < 0 for (2x2 + y) = 2 and rV � F > 0 for
(2x2 + y) = 0:5.

The origin is the only equilibrium point of the system. It is not so easy to see
from the system of equations itself. But one can see it easier by cheching �rst zeroes
of Vf (x; y) that is a scalar function and evidently must be zero in all equilibrium points..
We observe that V (x; y) = 2x2 + y2 is positive de�nite and rV � f(x; y) = 0 only if

(x; y) = (0; 0) or if (2x2 + y2) = 1:But it is easy to see from the expression for the right
hand side for the ODE that in the last case (x; y) cannot be equilibrium point because the
right hand side becomes linear with nondegenerate matrix and is zero only in the origin
(x; y) = (0; 0). The equation for equilibrium points on the level set (2x2 + y2) = 1 is the
following:�

0 = x� 2y � x = �2y
0 = 4x+ y � y = 4x

The compact positively invariant set R must include at least one !� limit set 
(�) in
R: R does not include any equilibrium point and according to Poincare-Bendixson theorem
this !� limit set 
(�) must be the orbit of a periodic solution.�
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Example
Show that the following system of ODE-s has a periodic solution.�

x0 = 4x+ y � x
�
5x2 � 2

p
3xy + 7y2

�
y0 = �x+ 4y � y

�
5x2 � 2

p
3xy + 7y2

� (4p)

Hint. The Cauchy inequality jabj � 0:5 (a2 + b2) can be useful for analysis here.
Solution. We like to apply the Poincare-Bendixson theorem to prove that the system

has a periodic solution by showing that some of it�s trajectories must have a periodic orbit
as an !-limit set. To show it we �nd a positively - invariant set that does not include
equilibrium points. By the Poincare-Bendixson theorem all trajectories starting in this
positively invariant set will have an ! limit set that is a periodic orbit.
We consider the test function V (x; y) = 1

2
(x2 + y2) and try to �nd two such circles (level

sets to V (x; y)) that they bound a positively invariant set .

Vf (x; y) =

�
4x+ y � x

�
5x2 � 2

p
3xy + 7y2

�
�x+ 4y � y

�
5x2 � 2

p
3xy + 7y2

� � � x
y

�
=

x
�
4x+ y � x

�
5x2 � 2

p
3xy + 7y2

��
+ y

�
�x+ 4y � y

�
5x2 � 2

p
3xy + 7y2

��
=�

4�
�
5x2 � 2

p
3xy + 7y2

��
(x2 + y2) :

We see that Vf (x; y) < 0 for 4 �
�
5x2 � 2

p
3xy + 7y2

�
< 0 and Vf (x; y) > 0 for 4 ��

5x2 � 2
p
3xy + 7y2

�
> 0.

The curve 4 =
�
5x2 � 2

p
3xy + 7y2

�
is an ellipse (red curve on the picture) because

the expression
�
5x2 � 2

p
3xy + 7y2

�
is positive de�nite by the Cauchy inequality jxyj �

0:5 (x2 + y2) :
5x2 � 2

p
3xy + 7y2 � 5x2 � 2

p
3 (x2 + y2) 0:5 + 7y2 = x2

�
5�

p
3
�
+ y2(7 �

p
3) > 0,

(x; y) 6= 0:
One can also observe it by investigating eigenvalues of the matrics corresponding this

quadratic form:

Q(x; y) = 5x2 � 2
p
3xy + 7y2 =

�
x y

� � 5 �
p
3

�
p
3 7

� �
x
y

�
.
�

5 �
p
3

�
p
3 7

�
. The

matrix
�

5 �
p
3

�
p
3 7

�
has eigenvalues: 4; 8 > 0; eigenvectors are orthogonal vectors

� p
3=2
0:5

�
and

�
�0:5p
3=2

�
that de�ne the orientation of the ellips.

This ellipse separates the area where Vf (x; y) < 0 and trajectories of the system go inside
circles, that are level sets of V (x; y) from the area where Vf (x; y) > 0 and trajectories of the
system go outside circles that are level sets of V (x; y).
Finding two circles x2 + y2 = R2 and x2 + y2 = r2 , R > r > 0 such that the �rst one

is completely outside the ellipse 4 =
�
5x2 � 2

p
3xy + 7y2

�
and the second one is completely

inside the ellipse, will give us the desired ring shaped positively invariant set: r2 < x2+y2 <
R2. It is intuitively evident that such R - large enough and r - small enough exist.
Then we must check that the ring shaped positively invariant set does not contain

any equilibrium points. In any equilibrium point we must have Vf (x; y) = 0. It im-
plies that (x2 + y2)

�
4�

�
5x2 � 2

p
3xy + 7y2

��
= 0 that gives us that an equilibrium point

must be in the origin, that is outside our positively invariant set, or on the ellipse 4 =
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�
5x2 � 2

p
3xy + 7y2

�
. We observe from the ODE, that on this ellipse x0 = y and y0 = �x.

Therefore equilibrium points can be only the origin (x; y) = (0; 0): It is outside the ellipse
and outside the positively invariant set.
Therefore all trajectories starting in the positively invariant set r2 < x2 + y2 < R2 must

have an ! - limit set inside it and this limit set must be a periodic orbit by the Poincare-
Bendixson theorem. Therefore the system must have at least one periodic orbit inside the
positively invariant set:
We can also �nd some explicit estimates for R and r:
We consider the expression

�
4�

�
5x2 � 2

p
3xy + 7y2

��
and try to �nd a circle x2+y2 = R2

such that
�
4�

�
5x2 � 2

p
3xy + 7y2

��
< 0 on it:�

4�
�
5x2 � 2

p
3xy + 7y2

��
�
�
4� 5x2 + 2

p
3 jxyj � 7y2

�
�
�
4� 5x2 +

p
3 (x2 + y2)� 7y2

��
4� 5x2 +

p
3 (x2 + y2)� 7y2

�
= 4 �

�
5�

p
3
�
x2 �

�
7�

p
3
�
y2 � 4 �

�
5�

p
3
�
x2 ��

5�
p
3
�
y2 � 0:

Therefore for x2 + y2 = R2 � 4=
�
5�

p
3
�
the desired inequality Vf (x; y) � 0 is valid.

We found an outer boundary of the ring shaped positively invariant set.
R � 2 for example would work.
We consider the expression

�
4�

�
5x2 � 2

p
3xy + 7y2

��
and try to �nd a circle x2+y2 = r2

such that
�
4�

�
5x2 � 2

p
3xy + 7y2

��
� 0 on this circle:�

4�
�
5x2 � 2

p
3xy + 7y2

��
�
�
4�

�
5x2 + 2

p
3 jxyj+ 7y2

��
��

4�
�
5x2 + 2

p
3 jxyj+ 7y2

��
�
�
4�

�
5 +

p
3
�
x2 �

�
7 +

p
3
�
y2
�
�
�
4�

�
7 +

p
3
�
x2 �

�
7 +

p
3
�
y2
�
�

0
Therefore for x2+ y2 = r2 < 4=

�
7 +

p
3
�
the desired inequality Vf (x; y) � 0 is valid. We

have found the internal boundary for the ring shaped positively invariant set that �nally is
de�ned by

�
4=
�
7 +

p
3
�
< x2 + y2 < 4=

�
5�

p
3
�	
: Check the picture of the ellips and two

circles that we found.

10.750.50.250-0.25-0.5-0.75-1

1

0.75

0.5

0.25

0

-0.25

-0.5

-0.75

-1

x

y

x

y
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Problems on Floquet theory and linear non-autonomous equations
5. Exercise 2.21. p.58.
Consider the Hill equation y00 + a(t)y = 0; a(t+ p) = a(t):with periodic a(t) with period

p = 1. The vector form with x1(t) = y(t), x2(t) = y0(t) of the equation is:

x0 = A(t)x

A(t) =

�
0 1

�a(t) 0

�
We choose a(t) as a piecewise constat periodic function:

a(t) =

�
!2; m � t < m+ �
0; m+ � � t < m+ 1

Here � 2 (0; 1), ! = �=� :
Consider the transfer matrix solution �(t; 0) and show that its �rst column �1(t; 0) is

periodic with period 2, and it�s second column �2(t; 0) is unbounded with it�s �rst element
at times t = n equal to (�1)nn(1� �).
Solution. The monodromy matrix has the followinf structure:

�(1; 0) = �(1; �)�(� ; 0) = exp((1� �)A2) exp(�A1)
where according to the de�nition of A(t)

A1 =

�
0 1
�!2 0

�
= A(t) , t 2 (0; �)

A2 =

�
0 1
0 0

�
= A(t); t 2 (� ; 1)

Eigenvectors to A1 are:
�
v1
v2

�
=

��
� i
!

1

��
$ i!;��

i
!

1

��
$ �i!:

Check the �rst of eigenvectors:�
0 1
�!2 0

� �
v1
v2

�
= i!

�
v1
v2

�

v2 = i!v1

�!2v1 = i!v2

x�(t) =

��
� i
!

1

�
exp(i!t)

�
=

�
� i
!

1

�
(cos(!t) + i sin(!t)) =

�
� i
!
(cos t! + i sin t!)
cos t! + i sin t!

�
; Rex�(t) =

�
1
!
(sin t!)
cos t!

�
; Imx�(t) =

�
� 1
!
cos t!

sin t!

�
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We like to build using these two linearly independent solutions, one solution with initial

data e1 =
�
1
0

�
and one solution with initial data e2 =

�
0
1

�
: It is easy to see that the

following solutions satisfy these initial conditions and can be collected into the transfer
matrix:

�(t; 0) = [�! Im x�(t);Rex�(t)] =
�

cos t! 1
!
(sin t!)

�! sin t! cos t!

�
�(� ; 0) =

�
cos �! 1

!
(sin �!)

�! sin �! cos �!

�
We will calculate �(t; �) for t 2 (� ; 1]:

A2 =

�
0 1
0 0

�
A2 is a Jordan block with eigenalue � = 0.

Then �(t; �) = exp
�
(t� �)

�
0 1
0 0

��
= e0(t��)

�
1 t� �
0 1

�
according to formulas for a

Jordan block.

Then �(1; �) =
�
1 1� �
0 1

�
;

The monodromy matrix is calculated as:

�(1; 0) = �(1; �)�(� ; 0) =

�
1 1� �
0 1

� �
cos �! 1

!
(sin �!)

�! sin �! cos �!

�
=

�
cos �! � ! (sin �!) (1� �) 1

!
sin �! + (cos �!) (1� �)

�! sin �! cos �!

�
If ! = �=� , then the monodromy matrix is

�(1; 0) =

�
cos � � ! (sin �) (1� �) 1

!
sin � + (cos �) (1� �)

�! sin � cos �

�
=

�
�1 � (1� �)
0 �1

�

Eigenvalues of this triangular monodromy matrix are both equal to �1;2 = �1.

Checking the matrix �(1; 0)� (�1)I =
�
0 � (1� �)
0 0

�
we �nd only one linearly inde-

pendent eigenvector to �(1; 0) is e1 =
�
1
0

�
:
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1) Therefore there must exist unbounded solutions because the multiple �1;2 = �1 is not
semisimple. (!!!!)
2) Therefore (�1;2)

2 = 1 . It implies by a Corollary previous time that the solution with
initial data equal to the corresponding eigenvector e1 has the period 2p = 2 that is the
double period of the system. In this particular case the period of coe¢ cients is p = 1.

A1v = �v; v - an eigenvector

x�(t) = exp(t�)v is a solution to

x0 = A1x

This solution is the �rst column in �(t; 0); because the corresponding eigenvector e1 =
�
1
0

�
- is the initial condition for the �rst column in �(t; 0):
In time points t = pn = n the second column in �(t; 0) is equal to the second column in

�(1; 0)n -that is the n - th power of the monodromy matrix that coinsides with �(t; 0) for t
equal to integer number of periods.

�(1; 0)2 =

�
�1 � (1� �)
0 �1

� �
�1 � (1� �)
0 �1

�
=

�
1 �2� + 2
0 1

�
�(1; 0)3 =

�
�1 � (1� �)
0 �1

�3
=

�
�1 3� � 3
0 �1

�
�(1; 0)4 =

�
�1 � (1� �)
0 �1

�4
=

�
1 �4� + 4
0 1

�
We observe that �(1; 0)n =

�
1 (�1)nn (1� �)
0 (�1)n

�
and the exercise is �nished.

�
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