
Figure 2: Colored surface is the hypersur-
face (instead of hyperplane since it is non-
liner). In [1] I get non-physical (negative)
friction velocities, uτ , predicted by svr-
LINEAR when I use too small “slack” (i.e.
too large C). Thick blue line: uτ = 0.
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Figure 1: Sketch of support vector regression
(SVR). Data point inside (•) and outside (�) the
tube (gray area). The gray dashed line is the hy-
perplane (regression plane) predicted by (the non-
linear) svrLINEAR. A large C enlarges the area
of the blue area.

Background
Machine learning is a method where known data are used for teaching the algorithm to classify a set
of data. The data may be photographs where the machine learning algorithm should recognize, for
example, traffic lights or traffic signs [2]. Another example may be ECG signals where the machine
learning algorithm should recognize certain unhealthy conditions of the heart [3]. A third example
is detecting fraud for credit card payments [4]. Machine learning methods such as Support Vector
Machines (SVM) and neural networks are often used for solving this type of problems.

The examples above are classification problems using supervised learning. However, in the
present project input and output are numerical values. In this case, machine learning in the form
of regression methods should be used [3]; we will use support vector regression (SVR) methods
available in Python.

In SVR a regression multi-dimensional “surface” is created which has as many dimensions as
number of influence parameters. Let’s make a simple example. In Fig. 1 there is one influence
parameter, x, and one parameter to predict, y. Two main control parameters are given to the SVR
methods. The first is ε which determines the width of the tube around the hyperplane 1. Points that
lie inside this tube are considered as correct predictions and are not penalized by the algorithm. The

1A hyperplane is a plane whose number of dimension is the same the number of influence parameters. For example, a
two-dimensional hyperplane has two influence parameters.

1
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2

support vectors are the points that lie outside the tube. The second parameter given to SVR models
is the C value. It controls the “slack” (ξ ), see Fig. 1, which is the distance to points outside the non-
penalized area (the tube plus the blue area). If C is increased the size of the blue area is increased so
that some or all of the data points are located inside the non-penalized area. It was found in [1] that
the parameter C may have a large influence on the form of the hyperplane/hypersurface and give
non-physical friction velocities, see Fig. 2.

Methodology: Machine Learning in turbulence modeling
The time-averaged Navier-Stokes for ū in two dimensions read
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The two last terms include the unknown turbulent Reynolds stresses which must be modeled. The
shear stress in the k − ε model, for example, is modeled as
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(1)

where k is the turbulent kinetic energy, ε is its dissipation and Cµ is assumed to be constant, Cµ =
0.09.

• The students will get “exact” solutions (i.e. solutions of Direct Numerical Simulations [DNS])
of both simple flows (channel and boundary flows) and more complex flows including re-
circulation.

• The students will then use svr and/or svrLINEAR in Machine Learning (ML) for finding a
more general expression for Cµ. Influence parameters may be velocity gradients (coordinate-
invariant) and/or the turbulent time-scale, k/ε, both functions of x and y. The output param-
eter will be Cµ = Cµ(x, y). An example of Python code with ML is found here. When you
execute the Python code you find that the ML-based turbulence model is indeed slightly better
than the standard k − ε model.

• Next, the students will perform simple 2D CFD simulations (using my Python CFD code
pyCALC-RANS [5]) comparing the original k − ε turbulence model (Eq. 1) with the im-
proved ML turbulence model. Students may choose to use a commercial code such as STAR-
CCM+ or ANSYS instead of pyCALC-RANS .

• Equation 1 is a very simple model for the Reynolds shear stress. More complex models include
non-linear velocity gradient, see Chapter 14 in my eBook [6]. Then there are six coefficients to
optimize (c1, c2, . . . c6). Another example is the Explicit Algebraic Stress Model, see Section
11.11 in my eBook.

Objective
The object is to

• learn how to use Machine Learning methods such as svr and svrLINEAR to improve exist-
ing turbulence models.

• implement the new turbulence model(s) in a CFD code (e.g. pyCALC-RANS )

Pre-requisites
The students should have an interest in either fluid mechanics or Machine Learning. You should
also have basic knowledge in Python (if you don’t, please consider to take the course DAT171 –
Object-oriented programming in Python in Study Period 3).

http://www.tfd.chalmers.se/~lada/Developing-turbulence-models-using-Machine-Learning-in-Python.html
http://www.tfd.chalmers.se/~lada/postscript_files/py-calc-rans.pdf
http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf
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Target Group
Teknisk fysik, Teknisk design, maskinteknik, teknisk matematik, informatonsteknik, kemiteknik,
kemiteknik med fysik, datateknik, eller motsvarande

Group Size
4-6 students

Supervisor
Lars Davidson lada@chalmers.se

Examiner
Niklas Andersson, nian@chalmers.se
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