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1 Introduction

1.1 Course description

The explosion in the volume of data collected in all scientific disciplines and in
industry requires students interested in statistical analyses and machine-learning
and signal-processing algorithms to acquire more sophisticated probability tools
than the ones taught in basic probability courses.

This course provides an introduction to the area of high-dimensional statis-
tics, which deals with large scale problems where both the number of parameters
and the sample size is large.

The course covers fundamental tools for the analysis of random vectors, ran-
dom matrices, and random projections, such as tail bounds and concentration
inequalities. It further provides practically relevant applications of such tools
in the context of sparse linear models, matrix models with rank constraints,
community detection, principal component analyses, clustering, and sample
complexity in statistical learning theory.

1.2 Literature

This course is mainly based on the following five books:

• Vershynin, High-dimensional probability: an introduction with applica-
tions in data science (2019). Available online.

• Wainwright, High-dimensional statistics: a nonasymptotic viewpoint (2019).
Available online via Chalmers library.

• Bandeira, Singer, and Strohmer, Mathematics of Data Science (2020)
Available online.

• Foucart and Rauhut, A mathematical introduction to compressive sensing
(2013). Available online through Chalmers library

• Shalev-Shwartz and Ben-David, Understanding machine learning: from
theory to algorithms (2014). Available online through Chalmers library

These notes borrow heavily from all five sources, while trying to keep the
notation consistent.

1.3 Prerequisites

• We will often use basic results from probability theory, such as union
bound. A good overview of the basic results that will be needed in this
course can be found in the first chapters of [1].

• We will also use basic results in linear algebra related to matrix decom-
position and vector and matrix norms. A good reference is [2].

We will assume that the students are familiar with this material.
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1.4 Some comments on these lecture notes

Proofs are mostly omitted at this stage of the draft. Most of them will be
provided during the lectures and some of them are sketched in the course slides.
Finally, some of them will be covered in the homework assignments.
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2 Surprises in high dimension

Why is the high-dimension regime special? Why may standard approaches in
statistics and machine learning fail to capture the peculiarities of this regime?
To illustrate why this is the case, we will describe in this chapter some phenom-
ena occurring in high dimensions, which are somewhat counterintuitive.

2.1 The curse of dimensionality

Curse of dimensionality: many algorithmic approaches to problems in Rd

become exponentially more difficult as d grows.
Example: if we want to sample uniformly the unit interval so that the

distance between adjacent points is at most 0.01, it suffices to have 100 evenly-
spaced points. If we now want to achieve the same result when sampling
uniformly a five-dimensional unit cube, we need 1010 sample points.

Punchline: a modest increase in dimensions results in a dramatic increase
in data points to cover the space at the same density.

2.2 Geometric surprises in high dimension

• Source: Chapter 2 of [3].

2.2.1 Geometry of spheres and balls in high dimension

Our intuition about space is based on two and three dimensions, and can often
be misleading when we move to high dimensions. Properties of even very
basic objects become counterintuitive in high dimensions. It is important to
be aware of this to avoid pitfalls when designing machine-learning algorithms
and statistical methods for high-dimensional data.

Let’s study some of the properties of the ball and the cube, two objects we
are very familiar with in 3 dimensions, as the number of dimensions increases.
The d-dimensional ball of radius R is defined by

Bd(R) = {x ∈ Rd : x21 + · · ·+ x2d ≤ R2}. (1)

The d-dimensional sphere of radius R is given by

Sd−1(R) = {x ∈ Rd : x21 + . . . x2d = R2}. (2)

Finally, the d-dimensional cube with side length 2R is the subset of Rd defined
as

Cd(R) = [−R,R]× · · · × [−R,R]︸ ︷︷ ︸
d times

. (3)

To keep notation compact, we set Bd(1) = Bd, Sd−1(1) = Sd−1, and Cd(1/2) =
Cd. Here are some surprising results about these objects.

5
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The volume of Bd(1) vanishes as d grows

Theorem 1 The volume of Bd(R) is given by

Vol(Bd(R)) =
πd/2Rd

Γ(d/2 + 1)
. (4)

Here, Γ(z) is the so-called Gamma function, defined as

Γ(z) =

∞∫
0

xz−1e−xdx. (5)

When z is a positive integer, one can show that Γ(z) = (z − 1)!. To obtain
some insights on the behavior of (4), we use Stirling’s formula, a well-known
approximation for the factorial function. It states that for every integer n,

n! ∼
√
2πn

(n
e

)n
. (6)

Here, we used the convention that f(n) ∼ g(n) means that limn→∞ |f(n)/g(n)| =
1. Using (6), we conclude that, when d/2 is an integer,

Γ

(
d

2
+ 1

)
∼

√
πd

(
d

2e

)d/2

. (7)

We now substitute (7) into (4) and conclude that we can approximate the
volume of the unit d-ball for large d as

Vol(Bd) ∼ 1√
dπ

(
2πe

d

)d/2

=
1√
dπ
e−(d/2) log(d/(2πe)). (8)

Note that the right-hand side vanishes when d→ ∞. This implies the following
perhaps surprising result: the unit ball Bd has vanishing volume as d grows
large. The next two results provide some intuition on why this is the case.

The volume of Bd(1) is concentrated close to the equator. Let us now
study where most of the volume is concentrated. If we cut a 3D ball in horizontal
slabs of the same thickness, then we know that the slide in the middle will be
the largest. This effect increases dramatically when the number of dimensions
increases.

Theorem 2 Fix p ∈ [0, 1] and let P = {x ∈ Rd : ∥x∥ ≤ 1, x1 > p} denote
the polar cap, i.e., the part of the ball Bd(1) above the slab of width 2p at the
equator. Then, for sufficiently large d,

2Vol(P )

Vol(Bd)
≤ e−

d−1
2 p2

. (9)

In words, no matter how small p is, the ratio between the volume of both polar
caps and the total volume of the ball goes to zero, which implies that all volume
concentrates close to the equator. Note that the decay is exponential in d.

6
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The volume of the ball is concentrated on a shell. Consider two concen-
tric balls Bd(1) and Bd(1− ϵ) for some arbitrary ϵ ∈ (0, 1). It follows from (4)
that

Vol(Bd(1− ϵ))

Vol(Bd(1))
= (1− ϵ)d. (10)

Note now that for every ϵ ∈ (0, 1), we have that (1 − ϵ)d → 0 as d → ∞. This
means that the spherical shell given by the region between Bd(1) and Bd(1− ϵ)
contains most of the volume of Bd(1) for large enough d, no matter how small ϵ
is. In other words, most of the volume of the ball Bd(1) is “concentrated on the
surface”.

Geometry of the cube in Rd. The cube in Rd exhibits an even more interest-
ing volume-concentration behavior. We will highlight some strange phenomena
occurring as d grows, deferring the proof of these phenomena to later in the
course. The proofs will rely on concentration of measure techniques in high-
dimensional probability, which will one of the main new tools introduced in this
course.

Let us start with a somewhat trivial observation: the cube Cd(1/2) has
volume 1 and diameter,

√
d defined as maximum distance between two points.

It is easy to verify that, in 2 dimensions, C2(1/2), which is a square of side 1,
is contained in Bd(1), which is a circle of radius 1. Furthermore, Bd(1/2) is the
largest ball that is inscribed in the square. Indeed, the diameter is

√
2 and each

vertex is
√
2/2 away from the center. But as d increases, each vertex of the cube

moves to a distance
√
d/2 from the center. This means that when d > 5, the

vertexes of the cube are no longer contained in Bd(1). However, the largest ball
inscribed in the cube has still radius 1/2. To summarize, the maximum distance
between two points increases with the dimension d, but the largest ball that can
be inscribed in the cube has radius that does not grow with d. This implies that
cubes in high dimension are somewhat “pointy”, despite being convex. Indeed,
one can prove that most of the volume of a cube in high dimension is located
around its vertexes. We shall prove this result in Section 3.5.2.

7
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3 Tail bounds and concentration of measure

3.1 Basics concepts from probability

• Source: Vershynin, Section 1.1.

• Mean of random variable X: E[X].

• Variance: Var[X].

• Moment generating function: MX(t) = E[etX ], t ∈ R. If MX(t) exists in
a neighborhood (−b, b) of t = 0, then

MX(t) =

∞∑
k=0

E
[
Xk
]
tk

k!
. (11)

This means that we can obtain all moments E
[
Xk
]
of X simply by

evaluating at zero the derivative of the corresponding order of MX(t).
Hence, the name of MX(t).

• Lp norm of a random variable: ∥X∥Lp = E[|X|p]1/p, p ∈ [0,∞], with
the usual extension ∥X∥L∞ = ess sup |X|. Note: strictly speaking, this
quantity is a norm only when p ≥ 1.

• Lp is sometimes used also to indicate the space of all random variables
with finite Lp norm.

• Standard deviation: σ(X) =
√
Var[X]

• Covariance of the random variables X and Y : Cov[X,Y ] = E[(X −
E(X))(Y − E(Y ))].

• Union bound: let A1,A2, . . . be a infinite countable set of events; then

P

[ ∞⋃
i=1

Ai

]
≤

∞∑
i=1

P[Ai]. (12)

3.2 Some classical inequalities

• Source: Vershynin, Section 1.3.

• Hölder’s inequality: given the random variables X and Y and p, q ≥ 1
with 1/p+ 1/q = 1,

|E[XY ]| ≤ ∥X∥Lp∥Y ∥Lq . (13)

The special case p = q = 2 is known as the Chauchy-Schwarz inequal-
ity

• Jensen’s inequality: For any real-valued random variable X and convex
function ψ : R → R,

8
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ψ(E[X]) ≤ E[ψ(X)]. (14)

Note: since ψ(x) = xq/p is a convex function for q ≥ p ≥ 0, it follows from
Jensen’s inequality that

∥X∥Lp
≤ ∥X∥Lq

. (15)

• Minkovskii’s inequality: for every p ∈ [1,∞] and every random vari-
ables X,Y we have

∥X + Y ∥Lp ≤ ∥X∥Lp + ∥Y ∥Lp . (16)

• The cumulative distribution of X is defined as FX(t) = P[X ≤ t], t ∈ R.
The tail of X is the function t→ P[X ≥ t].

The next theorem establishes as useful connection between expectation and
tails.

• Integral identity: Let X be a non-negative random variable. Then

E[X] =

∞∫
0

P[X > t]dt. (17)

• Markov’s inequality: For any nonnegative random varibale X, we have
that

P[X ≥ t] ≤ E[X]

t
. (18)

This inequality is often too weak to give good tail bounds. As we shall
see, it is however the key tool to obtain much more powerful inequalities.

• Chebyshev’s inequality: it is a direct consequence of Markov’s inequal-
ity. Let X be a random variable with mean µ and variance σ2. Then for
all t > 0,

P[|X − µ| ≥ t] ≤ σ2

t2
. (19)

Chebyshev’s inequality is a simple form of concentration inequality: it guar-
antees that X must be close to its mean µ when the variance σ2 of X is small.
Both Markov and Chebyshev are sharp inequalities, in the sense that there
exist random variables for which they hold with equality. Note that Markov’s
inequality requires only the existence of the mean of a random variable, whereas
Chebyshev’s inequality requires the existence of the second moment. One can
of course generalize these inequalities to higher moments, provided that they
exist.

9
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• Chernoff bound: Assume that the moment generating function of X
exists in a neighbor around zero, i.e., there exists some constant b > 0
such that E[eλ(X−µ)] exists for all λ ∈ [−b, b]. In this case, by applying
Markov’s inequality to the random variable Y = eλ(X−µ), for λ ∈ [0, b] we
obtain the Chernoff bound

P[(X − µ) ≥ t] ≤ E[eλ(X−µ)]

eλt
. (20)

Observe that λ needs to be non-negative for this inequality to hold. The tightest
bound is obtained by optimizing over λ:

logP[(X − µ) ≥ t] ≤ min
λ∈[0,b]

{logE[eλ(X−µ)]− λt}. (21)

As we shall see later in the course, a variety of very important concentration
bounds follow directly from Chernoff bound.

3.3 Sub-Gaussian random variables

• Source: Section 2.2.1 of [4].

As we have just shown, Chernoff bound depends on the moment generating
function. Since Chernoff bound is an important tool in obtaining tail bounds in
high-dimensional statistics, it is natural to classify random variables in terms
of their moment generating function. An important class of random variables
is that of sub-Gaussian random variables. To introduce this class of random
variables, it is instructive to first discuss in details the case of Gaussian random
variables.

Gaussian tail bounds: Let X ∼ N (µ, σ2). The moment generating function
of X − µ is given by

E[eλ(X−µ)] = e
σ2λ2

2 (22)

which is valid for all λ ∈ R. Substituting this expression in the Chernoff
bound (20), we get

inf
λ≥0

{
logE[eλ(X−µ)]− λt

}
= − t2

2σ2
(23)

This means thatN (µ, σ2) random variables satisfy the following upper deviation
inequality

P[(X − µ) ≥ t] ≤ e−t2/(2σ2), ∀t ≥ 0. (24)

This bound is actually fairly tight, as shown in Fig. 1, although it can be
improved (see Exercise 9). It turns out that tail bounds of the same form
as (24) can be obtained for non-Gaussian random variables, as long as they
have a moment-generating function that can be upper-bounded by that of a
Gaussian random variable. This motivates the following definition.

10
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Figure 1: Exact tail bound of a N (0, 1) random variable as well as the Chernoff
bound (24) and the approximation suggested in Exercise 9.

Definition 3 (Sub-Gaussian random variables) A random variable X with
mean µ = E[X] is sub-Gaussian if there exists a positive constant σ such that

E[eλ(X−µ)] ≤ e
σ2λ2

2 , ∀λ ∈ R. (25)

The constant σ is a proxy of the standard deviation in the Gaussian case. In
fact, it is possible to verify that if X is sub-Gaussian according to (25), then
Var[X] ≤ σ2. We will refer to σ as the sub-Gaussian parameter. Note that
if (25) holds for some σ, it also holds for all γ ≥ σ. In this course, we will
typically not be interested in determining the smallest σ for which (25) holds.

It is easy to check that the upper-deviation inequality (24) holds for all σ
sub-Gaussian random variables. We state this result in the following theorem.

Theorem 4 (sub-Gaussian upper deviation inequality) Assume that X
is sub-Gaussian with parameter σ. Then

P[(X − µ) ≥ t] ≤ e−t2/(2σ2), ∀t ≥ 0. (26)

Note that if X is σ sub-Gaussian, then −X is also σ sub-Gaussian. It then
follows from the union bound applied to the probability of the event {(X−µ) ≥
t} ∪ {(X − µ) ≤ −t} that

P[|X − µ| ≥ t] ≤ 2e−t2/(2σ2), ∀t ≥ 0. (27)

Note that bounded random variables are sub-Gaussian. Specifically,
assume that X ∈ [a, b] with probability 1. Then X is sub-Gaussian with
parameter (b− a)/2.

11
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3.4 Sub-exponential random variables

• Source: Wainwright, Section 2.1.3.

The class of sub-Gaussian random variables includes many important families of
random variables. However, several probability distribution with heavier tails,
which occur frequently, are not in this class. A typical example is the so-called
double-sided exponential distribution, also known as Laplace distribution. This
distribution has the following probability density function:

fX(x) =
1

2b
e−|x−µ|/b. (28)

It has mean µ and variance 2b2. Note that, for µ = 0, this distribution is
obtained by gluing together two exponential distributions. Hence, its name.
Assume now that µ = 0 and b = 1. Then one can verify that

P[|X| > t] = 2P[X > t] = e−t. (29)

If we compare (29) with (26) (for the case µ = 0), we see that the tails of
the double-sided exponential distribution are heavier than that of sub-Gaussian
random variables. It turns out instructive to analyze the moment-generating
function of the double-sided exponential distribution. It is given by

E
[
eλX

]
=

1

1− λ2
, |λ| ≤ 1 (30)

and it is not defined for λ > 1. One can verify that (see Fig. 2)

1

1− λ2
≤ e2λ

2

, λ < 1/2 (31)

where the value 1/2 is actually a conservative estimate of the range of values
for which (31) holds. If we now compare (31) with (25) (for the case µ = 0, we
see that, in the neighborhood of the origin, the moment-generating function of
the double-sided exponential distribution behaves like the moment-generating
function of a sub-Gaussian random variable with parameter σ2 = 4. It turns out
that this property is shared by a large class of random variables whose tails are
heavier than that of sub-Gaussian random variables but no heavier than that
of a double-sided exponential random variable. This motivates the following
definition:

Definition 5 (Sub-exponential random variable) A random variable X with
mean µ = E[X] is sub-exponential if there exist nonnegative numbers ν and b
such that

E[eλ(X−µ)] ≤ eν
2λ2/2, ∀|λ| ≤ 1/b. (32)

In this case, we say that this random variable is (ν, b)-sub-exponential.

12
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Figure 2: Comparison between the left-hand side and the right-hand side of (31).

As in the sub-Gaussian case, we will often choose the parameters (ν, b) in a
convenient way, without trying to find the best (i.e., smallest) ones.

Note that the double-sided exponential distribution is sub-exponential with
parameters ν = 2 and b = 2. Furthermore, any sub-Gaussian random variable
with parameter σ is also sub-exponential with parameters (σ, 0). Here is another
nontrivial example of sub-exponential random variable. Let X ∼ N (0, 1). Let
Z = X2. Note that E[Z] = 1. One can show that

E[eλ(Z−1)] ≤ e4λ
2/2, ∀|λ| ≤ 1/4. (33)

This means that Z is sub-exponential with parameters ν = 2, b = 4. We now
generalize the upper-deviation inequality (26) to the case of sub-exponential
random variables.

Theorem 6 (Sub-exponential upper-deviation inequality) Assume that
X is sub-exponential with parameters (ν, b). Then

P[(X − µ) ≥ t] ≤

{
e−t2/(2ν2), if 0 ≤ t ≤ ν2/b

e−t/(2b), if t ≥ ν2/b.
(34)

Example: Consider the previous example of sub-exponential random variable.
Specifically, let X ∼ N (0, 1) and let Z = X2. Then Z is sub-exponential with
parameters (2, 4). It then follows from (34) that

P[Z − 1 ≥ t] ≤

{
e−t2/8, if 0 ≤ t ≤ 1

e−t/8, if t ≥ 1.
(35)

13
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More compactly,

P[Z − 1 ≥ t] ≤ exp

(
−1

8
min{t, t2}

)
. (36)

3.5 The blessing of high dimensionality

3.5.1 Concentration of sums of independent random variables

Say that we compute the empirical average of n independent and identically
distributed (iid) random variables. We know from the law of large numbers
that the empirical average converges to the expectation as n → ∞. The
concentration of measure results we investigate in this section help us quantify
how fast is this convergence.

The results we review next are an example of the so-called blessing of
dimensionality. This expression refers to the fact that certain random fluc-
tuations, which are complicated to model in the low-dimension regime, can be
controlled accurately in high dimensions. The concentration inequalities we will
establish in this section take the following form: let X1, . . . , Xn be iid random
variables with mean µ. Then

P

[∣∣∣∣∣ 1n
n∑

k=1

Xn − µ

∣∣∣∣∣ ≥ t

]
≤ something small. (37)

Three fundamental results

• Source: Vershynin, Chapter 2.1.

We start by reviewing three fundamental results in probability theory that,
however, do not provide estimates as tight as the ones we shall establish later.

The first result is the well-known law of large numbers.

Theorem 7 (Strong law of large numbers) Let X1, . . . , Xn be iid random
variables with mean µ. Let Sn = X1 + · · ·+Xn. Then as n→ ∞, we have that
Sn/n converges to µ almost surely.

The next result, called the central limit theorem, identifies the limiting distri-
bution of a properly scaled version of Sn.

Theorem 8 (Lindeberg-Lèvi central limit theorem) Let X1, . . . , Xn be iid
random variables with mean µ and variance σ2. Consider the normalized ran-
dom variable Zn =

∑n
k=1(Xk − µ)/

√
nσ2. Then, as n → ∞, the probability

distribution of Zn converges to that of a N (0, 1) random variables.

The final result we review here quantifies the rate at which convergence in the
central-limit theorem occurs.

14
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Theorem 9 (Berry-Esseen central limit theorem) Let Zn be as in Theo-
rem 8. Let Q(·) denote the Gaussian Q function and let c = E[|X1 − µ|3]/σ3.
Then

|P[Zn ≥ t]−Q(t)| ≤ 6c√
n
. (38)

This last result implies that the rate of convergence is of order 1/
√
n. Note that

the constant that multiplies the 1/
√
n term can be improved.

Hoeffding’s bound

• Source: Wainwright, Chapter 2.1.2 & Chapter 2.1.3.

As we shall see, we can obtain stronger concentration results than the ones just
reviewed, if we are told that the {Xk} are sub-Gaussian or sub-exponential.

We start by noting the following result. Let X1, . . . , Xn be independent
sub-Gaussian random variables with parameters σ1, . . . , σn, respectively. Then
it is easy to verify that Sn = X1 + · · · + Xn is sub-Gaussian with parameter√∑n

k=1 σ
2
k. The following large-deviation inequality, which is known as Hoeffd-

ing’s bound, then follows from (26).

Theorem 10 (Hoeffding’s bound) Let X1, . . . , Xn be independent and as-
sume that each Xk has mean µk and is sub-Gaussian with parameter σk. Then
for all t > 0,

P

[
n∑

k=1

(Xk − µk) ≥ t

]
≤ exp

(
− t2

2
∑n

k=1 σ
2
k

)
. (39)

Note that if the Xk are supported on the interval [a, b], then each Xk is sub-
Gaussian with parameter (b− a)/2 and (39) reduces to

P

[
n∑

k=1

(Xk − µk) ≥ t

]
≤ exp

(
− 2t2

n(b− a)2

)
. (40)

In particular, if we set t = nγ, and assume that µ1 = · · · = µn = µ, the
probability that the empirical average of these random variable deviates from
the mean decays as exp(−2nγ2/(b− a)2).

We can establish an inequality similar to Hoeffding’s inequality also for sub-
exponential random variables. To do so, we need the following observation. Let
{Xk − µk} be sub-exponential with parameters (νk, bk), k = 1, . . . , n. Then∑n

k=1(Xk − µk) is sub-exponential with parameters ν⋆ =
√∑n

k=1 ν
2
k and b⋆ =

maxk bk. This result, combined with (34) implies the following concentration of
measure result.

Theorem 11 (Large-deviation inequality for sum of sub-exp. RVs) Let
the RVs Xk, k = 1, . . . , n be defined as above. Then

P

[
n∑

k=1

(Xk − µk) ≥ t

]
≤

{
exp(−t2/(2ν2⋆)) if 0 ≤ t ≤ v2

⋆

b⋆

exp(−t/(2b⋆)) if t >
v2
⋆

b⋆
.

(41)
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Improving Hoeffding’s inequality: Bernstein’s inequality

• Source: Wainwright, Chapter 2.1.3.

Let us start with a motivating example. Let Xk, k = 1, . . . , n be iid and assume
that they are drawn according to the following distribution:

Xk =


−1, with prob. p/2

0, with prob. 1− p

1, with prob. p/2

(42)

Since the {Xk} are supported on {−1, 0, 1}, they are sub-Gaussian with
parameter 1. Also, they have zero mean. It then follows from Hoeffding’s
inequality that

P

[∣∣∣∣∣ 1n
n∑

k=1

Xk

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−nt

2

2

)
. (43)

However, this bound does not depend on p. Intuitively, the smaller p is
the more unlikely large deviations from the mean 0 should be. We next seek a
bound that hold for sequences X1, . . . , Xn with more general distribution than
the one just considered. We want that the resulting bound when applied to the
setup described above, improves on Hoeffding by capturing the dependence on
p. We shall assume for simplicity that all the {Xk} have the same mean µ and
the same variance σ2. We will also assume that these random variables satisfy
the following condition, which we will refer to as Bernstein’s condition.

Definition 12 (Bernstein condition) Let X be a RV with mean µ and vari-
ance σ2. We say that X satisfies the Bernstein condition with parameter b if

|E[(X − µ)k]| ≤ 1

2
k!σ2bk−2, k = 2, 3, . . . (44)

Bernstein condition is satisfied for bounded random variables (indeed, if
|X| ≤ c with probability one, then b = c), but it also hold for some unbounded
random variables. Bernstein condition can be used to tighten (in some cases)
Hoeffding’s inequality. Specifically, the following result holds.

Theorem 13 (Bernstein-type bound) For any random variable X satisfy-
ing the Bernstein condition (44), we have that

E[eλ(X−µ)] ≤ exp

(
λ2σ2/2

1− b|λ|

)
, ∀|λ| ≤ 1/b. (45)

Furthermore, the following tail bound holds:

P[|X − µ| ≥ t] ≤ 2 exp

(
− t2

2(σ2 + bt)

)
, ∀t ≥ 0. (46)
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Note that the Bernstein-type bound in (46) depends both on the variance σ2

of the random variable, and on the Berstein parameter, which for a bounded
random variable is related to the size of its support.

These two inequalities imply the following concentration of measure result
for sum of of i.i.d. random variables satisfying (44)

P

[∣∣∣∣∣
n∑

k=1

Xk − µ

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

2(nσ2 + bt)

)
∀t ≥ 0. (47)

Let us now go back to the example we started with. The random variables
in (42) are bounded on [−1, 1]. Hence, they satisfy Bernstein condition with
b = 1. Furthermore, σ2 = p. It then follows from (47) that

P

[∣∣∣∣∣ 1n
n∑

k=1

Xk

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− nt2

2(p+ t)

)
. (48)

Note that when t ≪ p this bound is much tighter than (43) and it essentially
reveals that the random variables behave as if they were sub-Gaussian with
parameter p instead of sub-Gaussian with parameter 1.

3.5.2 The geometry of the cube (revisited)

• Source: Bandeira, Chapter 2.4.2

We can use the concentration of measure results just established to prove
that almost all the volume of the cube in high dimensions is located in its
corners. The proof will be based on a probabilistic argument: it illustrates the
connection between geometry and probability in high dimensions.

Let Cd(1/2) = [−1/2, 1/2]d the cube of length 1 in d dimensions. Let
Bd(1/2) be the ball with radius 1/2 in d dimensions. We will show that
Vol(Cd(1/2)/Bd(1/2)) is large. Let X = (X1, . . . , Xn) be drawn uniformly
at random within the cube. This means that each component Xk, k = 1, . . . , d.
is uniformly distributed on [−1/2, 1/2]. We will show that the probability that

X ∈ Bd(1/2), i.e., the probability that
∑d

k=1X
2
k ≤ 1/4, is small. Let Zd = 4X2

d .
Note that E[Zk] = 1/3. Furthermore, the {Zk} are sub-Gaussian with parameter
1/2, since they are supported on [0, 1].

An application of Hoeffding’s inequality reveals that, when d ≥ 3,

P

[
d∑

k=1

X2
k ≤ 1

4

]
= P

[
d∑

k=1

Zk − d

3
≤ 1− d

3

]
≤ exp

(
−2(1− d/3)2

d

)
(49)

Note that for d ≫ 1, the right-hand side of this inequality is approximately
equal to exp(−2d/9). This means that the probability that a point drawn from
a uniform distribution on the cube is also in the sphere decays exponentially
with d. So most points must be outside the sphere, i.e., in the corners.
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Most points on the surface of a d-dimensional sphere are close to the
equator

• Source: Bandeira, Chapter 2.4.3

We next establish this result using a similar method. Let us consider a random
point uniformly drawn from the surface of the sphere. To generate this point, we
normalize a Gaussian-distributed d-dimensional random vector. Specifically, let
X̃ ∼ N (0, Id). Then it follows by circular symmetry of the Gaussian distribution
that X = X̃/∥X̃∥ is uniformly distributed on Sd−1(1).

Note that, by construction ∥X∥2 = 1. Furthermore, E[∥X∥2] =
∑d

k=1 E[X2
k ] =

1. By symmetry, we must have E[X2
k ] = 1/d for all k = 1, . . . , d.

To demonstrate that most of the surface is close to the equator, we just need
to show that, for example, P[|X1| > ϵ]. It follows from Chebyshev’s inequality
that

P[|X1| > ϵ] ≤ E[|X1|2]
ϵ2

=
1

dϵ2
. (50)

3.5.3 Random vectors in high dimensions

• Source: Bandeira, Chapter 2.4.4.

In this section, we will investigate two questions:

• What length do we expect a random vector in Rn to have?

• What is the angle between two random vectors?

Length of a random vector: Assume that the n-dimensional random vector
X = [X1, . . . , Xn] has iid entries with zero mean and unit variance. Since
E[∥X∥2] =

∑n
k=1 E[X2

k ] = n, we expect the typical length of X to be
√
n.

We will use the concentration of measure results just developed to make this
statement more precise.

For simplicity we shall focus on the case in which X ∼ N (0, Id). Then
∥X∥2 ∼ χ2(n). As discussed in Section 3.4, each X2

k is sub-exponential with
parameters (2, 4). It then follows from (41) that

P
[∣∣∣∣ 1n∥X∥2 − 1

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−n
8
min{t, t2}

)
. (51)

This gives a concentration result on ∥X∥2. But what can we say about ∥X∥? To
establish a concentration result on ∥X∥, we use that for all z ≥ 0, if |z − 1| ≥ δ
then |z2 − 1| ≥ max{δ, δ2}. Using this result, we conclude that

P
[∣∣∣∣ 1√

n
∥X∥ − 1

∣∣∣∣ ≥ δ

]
≤ P

[∣∣∣∣ 1n∥X∥2 − 1

∣∣∣∣ ≥ max{δ, δ2}
]
≤ 2 exp

(
−n
8
δ2
)
.

(52)
So we see that, in both cases, the probability that the vector has a length that
is δ away from the expected length

√
n vanishes exponentially in n.
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Angle between two random vectors

Theorem 14 (Angle between Rademacher vectors) Assume that X and
Y are d-dimensional random vectors1 that are independent and have iid ±1
entries with equal probability (Rademacher entries). Define the cosine of the
angle θ(X,Y ) between the two vectors as follows:

cos θ(X,Y ) =
Y TX

∥X∥∥Y ∥
=
Y TX

d
. (53)

Then

P

[
| cos θ(X,Y )| ≥

√
2 log d

d

]
≤ 2

d
. (54)

This result follows directly from Hoeffding inequality (40). Indeed, note that

Y TX =
∑d

k=1XkYk is the sum of i.i.d. Rademacher RVs. Hence,

P[|Y TX| ≥ t] = P

[∣∣∣∣∣
d∑

k=1

XkYk

∣∣∣∣∣ ≥ t

]
= P


∣∣∣∑d

k=1XkYk

∣∣∣
∥X∥∥Y ∥

≥ t

d

 ≤ 2 exp

(
− t2

2d

)
.

(55)
Then set t =

√
2d log d.

Theorem 14 implies that, as d grows large, it is more and more likely that two
randomly generated vectors with Rademacher entries are orthogonal. Indeed as
d→ ∞, we have that

√
(2 log d)/d→ 0.

A similar result holds also for Gaussian random vectors and for random
vectors chosen uniformly from the sphere Sd−1. Note also that while we can have
only d vectors that are orthogonal in Rd, for large d we can have exponentially
many vectors that are almost orthogonal. This is explored in exercise 13.

3.6 Exercises

Exercise 1 (Volume of Bd(R)) Prove the formula for the volume of Bd(R)
provided in (4). Plot Bd(1) as a function of d. For which value of d is Bd(1)
maximized?

Exercise 2 (p-moments via tails) Let X be a random variable and p ∈ (0,∞).
Show that

E[|X|p] =
∞∫
0

ptp−1P[|X| > t]dt. (56)

Exercise 3 (Chebyshev from Markov) Deduce Chebyshev’s inequality (19)
from Markov’s inequality (18).

1Throughout these notes, we will use the convention that vectors are always column vectors.
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Exercise 4 (Symmetry and sub-Gaussian random variables) Prove that
if X is sub-Gaussian with parameter σ, then −X is also sub-Gaussian with same
parameter.

Exercise 5 (Double-sided bound for sub-Gaussian random variables)
Let X be sub-Gaussian with parameter σ. Use the union bound and (26) to show
that

P[|X − µ| ≥ t] ≤ 2e−t2/(2σ2), ∀t ≥ 0 (57)

Exercise 6 (Bounded RVs are sub-Gaussian) Prove that bounded RVs are
sub-Gaussian. Specifically prove that if X ∈ [−a, a] with probability 1, and
E[X] = 0, then X is sub-Gaussian with parameter a. Here is a hint on how to
proceed:

• Use convexity to show that

eλx ≤ a+ x

2a
eλa +

a− x

2a
e−λa, ∀x ∈ [−a, a] (58)

• Apply this inequality to prove that E[eλX ] ≤ cosh(λa)

• Conclude the proof by arguing that cosh(λa) ≤ eλ
2a2/2.

Note that a more general result holds: if X is supported on [a, b], then X
is sub-Gaussian with parameter σ = (b − a)/2 (independently of its mean).
However, the proof is more involved.

Exercise 7 (Moments of sub-Gaussian random variables) Assume that
X has zero mean and it is sub-Gaussian with parameter σ. Then E[|X|p] ≤
2p/2pσpΓ(p/2). Hint: use (56).

Exercise 8 (Sub-exponential from sub-Gaussian) Let X be a zero-mean
sub-Gaussian random variable. Prove that X2−E[X2] is sub-exponential. Hint:

Take the Taylor expansion of E
[
eλ
(
X2−E[X2]

)]
. Use also that, for every non-

negative random variable Z, we have that E[(Z − E[Z])p] ≤ E[Zp], p ∈ N as
well as the result from the previous exercise.

Exercise 9 (Tail probability of a Gaussian random variable) Let ϕ(x) =
1√
2π
e−x2/2 and Φ(u) =

∫ u

−∞ ϕ(x)dx be the density and distribution function,

respectively, of the standard normal distribution. Show, e.g. using partial inte-
gration, that

1− Φ(u) ∼ ϕ(u)

u

i.e. that the probability that that a standard normal variable is larger than u

asymptotically is ϕ(u)
u . Compare with the subgaussian bound.

20



Giuseppe Durisi EEN100 September 13, 2023

Exercise 10 (Fair coins) Toss a fair coin n times: what is the probability
that we get at least 75% heads? Obtain the exact expression (which needs
to be evaluated numerically) and compare it with the estimates obtained using
Chebyshev’s inequality, the central-limit theorem, and Hoeffding’s inequality.

Exercise 11 (Improving the performance of a randomized algorithm)
Assume you are given a randomized algorithm for solving some decision prob-
lems. The algorithm returns the correct answer with probability 1/2+δ for some
δ > 0. To improve the performance, you decide to run the algorithm n times
and take a majority vote. How large should n be so that the answer is correct
with probability at least 1− ϵ?

Exercise 12 (Concentration of measure for chi-squared random variables)
Let Y be χ2 distributed with n degrees of freedom, i.e., Y =

∑n
k=1 Z

2
k where the

Zk are independent and N (0, 1)-distributed. Provide an estimate for P[ 1n
∑n

k=1(Z
2
k−

1) ≥ t]

Exercise 13 (Angle between binary vectors) Let X1, . . . , Xn be indepen-
dent d-dimensional vectors with Rademacher entries. How large can we choose
n if we want that with probability at least 7/8 the cosine of the angle between
any of two vectors is at most 1/100?
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4 Large random matrices

Random matrices occur naturally in many problems in high-dimensional statis-
tics, such as spectral clustering, principal component analysis, and covariance-
matrix estimation. In this chapter, we start an investigation of the non-asymptotic
behavior of random matrices.

4.1 Preliminaries on matrices

• Source: Vershynin, Chapter 4.1

4.1.1 Singular-value decomposition

We shall focus on a m×n dimensional matrix A with real entries. Such a matrix
can be represented using the singular value decomposition. Specifically, let
r be the rank of A. Then

A =

r∑
i=1

siuiv
T
i . (59)

Here, s1 ≥ s2 ≥ · · · ≥ sr ≥ 0 are non-negative number called singular values;
u1, . . . , ur are m-dimensional vectors referred to as the left singular vectors.
These are the orthonormal eigienvectors of the matrix AAT; finally, v1, . . . , vr
are n-dimensional vectors referred to as the right singular vectors. These
are the orthonormal eigienvectors of the matrix ATA. Note that the singular
values are related to the eigenvalues of AAT and of ATA, which we denote by
λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 (note that the matrices AAT and ATA are positive
semidefinite, so all eigenvalues are nonnegative). Specifically,

sk =
√
λk, k = 1, . . . , r. (60)

In general, if A is a symmetric matrix (i.e., A = AT), then the singular
values are equal to the absolute value of the eigenvalues of the matrix (note
that the eigenvalues may be negative, whereas the singular values are always
non-negative).

4.1.2 Norm of matrices

The space of m× n matrices can be equipped with several different norms. We
will mainly consider the operator norm, which is defined as follows:

∥A∥ = max
x∈Sn−1

∥Ax∥. (61)

Equivalently, the operator norm can be computed by maximizing the quadratic
form yTAx. Specifically,

∥A∥ = max
x∈Sn−1,y∈Sm−1

yTAx. (62)
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Recall now that ifB is a n×n symmetric matrix, the maximum and minimum
eigenvalues admit the following variational characterization (this result is known
as the Rayleigh-Ritz Theorem)

λ1 = max
x∈Sn−1

xTBx (63)

λn = min
x∈Sn−1

xTBx (64)

This variational characterization implies that

∥A∥ =
√
λ1(ATA) = s1(A). (65)

Furthermore, it also implies that, if A is a symmetric n× n matrix, then

∥A∥ = max
x∈Sn−1

|xTAx|. (66)

These results will turn out useful in various parts of the course.

4.2 The operator norm of sub-Gaussian random matrices

We are now ready to obtain our first result on random matrices. Specifically,
we shall show that if a m× n matrix A has independent sub-Gaussian entries,
then ∥A∥ is no larger than c(

√
m+

√
n), where c denotes a constant that does

not depend on m or n, with high probability.
It follows from (62) that to establish such a result, we need to show that the

probability that yTAx is larger than c(
√
m+

√
n) for some x ∈ Sn−1, y ∈ Sm−1

is small. The problem is that to do so, we will need to check uncountably many
x and y. Instead of doing so, we employ the so-called ϵ-covering argument.
The idea is to discretize the spheres Sn−1 and Sm−1 using only a finite number
of suitably chosen points (the ϵ-covering), control the error incurred by this
discretization step, and then apply concentration of measure results combined
with the union bound only over the chosen points.

4.2.1 Covering and packing

• Wainwright, Chapter 5.1, Varshynin, Chapter 4.2.1

We start by formally introducing the concept of ϵ-cover. Then we will dis-
cuss how to bound the cardinality of the minimal ϵ-covers for the unit-radius
hyperspheres Sn−1 and Sm−1.

Definition 15 (Covering number) An ϵ-cover of a set T ⊂ Rn is a set
{t1, . . . , tN} ⊂ T for which, for all t ∈ T , there exists a i ∈ {1, . . . , N} such that
∥ti − t∥ ≤ ϵ. The ϵ-covering number N(ϵ, T ) is the cardinality of the smallest
ϵ-cover.

A related concept is the one of ϵ-packing.
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Definition 16 (Packing number) An ϵ-packing of a set T ⊂ Rn is a set
{t1, . . . , tP } ⊂ T for which ∥ti − tj∥ > ϵ for all i, j ∈ {1, . . . , P}. The ϵ-packing
number P (ϵ, T ) is the cardinality of the largest ϵ-packing.

An ϵ-packing for T can be visualized as collection of balls of of radius ϵ/2
and center in T such that no two balls intersect. The following relation holds:

P (2ϵ, T ) ≤ N(ϵ, T ) ≤ P (ϵ, T ). (67)

In the next theorem, we bound the ϵ-covering number of the unit ball Bn, from
which a useful upper bound on the ϵ-covering number of the unit sphere Sn−1

follows.

Theorem 17 (Covering number of the Euclidean ball) The ϵ-covering num-
ber N(ϵ, Bn) of the Euclidean ball Bn satisfies

(1/ϵ)n ≤ N(ϵ, Bn) ≤ (2/ϵ+ 1)n. (68)

The upper bound is true also for the Euclidean sphere Sn−1.

4.2.2 Computing the operator norm on an ϵ-cover

As already mentioned, to evaluate ∥A∥ we need to maximize yTAx over x ∈
Sn−1 and y ∈ Sm−1. In the next theorem, we control the error resulting when
the maximization is performed on ϵ covers of Sn−1 and Sm−1.

Theorem 18 (Operator norm on a cover) Let A be an m × n matrix and
let ϵ ∈ [0, 1/2). For every ϵ-cover N of the sphere Sn−1 and for every ϵ-cover
M of the sphere Sm−1, we have

sup
x∈N ,y∈M

yTAx ≤ ∥A∥ ≤ 1

1− 2ϵ
sup

x∈N ,y∈M
yTAx. (69)

So this theorem tells us that if we replace the maximization over all x ∈ Sn−1

and y ∈ Sm−1, with a maximization over two ϵ nets of the two spheres, we pay
a multiplicative penalty equal to 1/(1− 2ϵ).

4.2.3 The norm of a sub-Gaussian random matrix

• Source: Vershynin, Chapter 4.4.2 (with some modifications to make the
constant explicit)

We are now ready to state our first result on random matrices.

Theorem 19 (Norm of matrices with sub-Gaussian entries) Let A be an
m×n random matrix whose entries Aij are independent, zero mean sub-Gaussian
random variables with parameter σij. Let σ = maxij σij. Then for all t ≥ 0 and
for all ϵ ∈ (0, 1/2) we have that

P

[
∥A∥ ≥

√
2σ2

1− 2ϵ

(
t+ (

√
m+

√
n)

√
log

(
2

ϵ
+ 1

))]
≤ e−t2 . (70)
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To be concrete, let us assume σ = 1, m = n, and t =
√
n. Then by optimizing

the bound over ϵ, we conclude that

P
[
∥A∥ ≥ 7.63

√
n
]
≤ e−n. (71)

Note that e−10 ≈ 4.5 · 10−5. So this bound provides a very sharp concentration
of measure result already for matrices as small as 10 × 10. This theorem can
be extended to symmetric matrices, which will play an important role in the
reminder of the course.

Theorem 20 (Norm of symmetric matrices with sub-Gaussian entries)
Let A be an n×n symmetric random matrix whose entries Aij on and above the
main diagonal are independent, zero-mean, sub-Gaussian random variables with
parameter σij. Let σ = maxij σij. Then for all t ≥ 0 and for all ϵ ∈ (0, 1/2) we
have that

P

[
∥A∥ ≥ 2

√
2σ2

1− 2ϵ

(
t+ 2

√
n

√
log

(
2

ϵ
+ 1

))]
≤ 2e−t2 . (72)

The idea of the proof is to split A in an upper-triangular part and a lower-
triangular part (the diagonal should be part of only one of the two matrices),
use Theorem 19 on each part (show that this theorem generalizes to this setting),
and then apply triangular inequality and the union bound.

Consider again the case σ = 1, m = n and t =
√
n. Then, after optimizing

over ϵ the bound in (72) becomes

P
[
∥A∥ ≥ 15.3

√
n
]
≤ 2e−n (73)

In general, for an arbitrary value of σ, we can conclude that, if A is sufficiently
large, then with high probability, ∥A∥ is no larger than c

√
n, where c is a

constant that depends on σ.

4.3 Application: community detection in networks

• Source: Vershyinin, Chapter 4.5

Results on random matrices are useful in many applications. Here is one
such example. Real-world networks are often organized in “communities”, i.e.,
clusters of vertexes that are tightly connected. The problem of community
detection deals with finding communities within a network.

Consider the problem depicted in Fig. 3. This is a real data set of political
blogs (n = 1222) from the 2004 US political elections. Specifically, we have
access to the following information: which blog refers to which other blog
through hyperlinks. Our task is to decide the political inclination of the blogs
(democratic vs republican).
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assuming two communities is an educated guess here, but one can also estimate the
number of communities (e.g., as in [AS15d]). The type of algorithms developed in
Sections 7.2 and 7.1 can then be run on this data set, and two assortative communities
are obtained. In the paper [AG05], Adamic and Glance recorded which blogs are
right or left leaning, so that we can check how much agreement the algorithms give
with the true partition of the blogs. The results give about 95% agreement on the
blogs’ political inclinations, which is the state-of-the-art [New11, Jin15, GMZZ15].

Figure 2: The above graphs represent the real data set of the political blogs from
[AG05]. Each vertex represents a blog and each edge represents the fact that one of
the blogs refers to the other. The left graph is plotted with a random arrangement
of the vertices, and the right graph is the output of the ABP algorithm described
in Section 7.2, which gives 95% accuracy on the reconstruction of the political
inclination of the blogs (blue and red colors correspond to left and right leaning
blogs).

Despite the fact that the blog data set is particularly ‘well behaved’—there are
two dominant clusters that are well balanced and well separated—the above approach
can be applied to a broad collection of data sets to extract knowledge about the data
from graphs of similarities. In some applications, the graph of similarity is obvious
(such as in social networks with friendships), while in others, it is engineered from the
data set based on metrics of similarity that need to be chosen properly (e.g, similarity
of pixels in image segmentation). The goal is to apply such approaches to problems
where the ground truth is unknown, such as to understand biological functionality
of protein complexes; to find genetically related sub-populations; to make accurate
recommendations; medical diagnosis; image classification; segmentation; page sorting;
and more.

8

Figure 3: Real data set of political blogs: each vertex represents a blog and each
edge represents a hyperlink to another blog. The left graph depics the available
data, the right graph the output of a modern community detection algorithm.
This figure is taken from [5].

4.3.1 The stochastic block model

We will consider a simple community detection problem: we have a network
with n vertexes (n even), which are divided in two communities of n/2 vertexes
each. We construct a random graph consisting of these vertexes as follows. Two
vertexes are connected with probability p if they belong to the same community;
otherwise they are connected with probability q. Note that we allow self loops.
This model is an example of the so-called stochastic block model. We assume
that p > q so that edges are more likely to occur within communities than across
communities.

For a given random graph, the community detection problem involves decid-
ing which vertexes belong to the first community and which vertexes belong
to the second community. We describe one such random graph using the
adjacency matrix A, a binary matrix, whose entry in position (i, j) is equal
to 1 if there exists an edge between vertex i and vertex j, and it is equal to
zero otherwise. It follows from our construction that A is symmetric and that
the entries of A are Bernoulli distributed. Specifically, they are either Bern(p)
or Bern(q), depending whether the corresponding vertexes belong to the same
community or not.

Let D = E[A], where the expectation is taken entry-wise and let E = A−D,
so that A = D + E. It turns out that if D was known to us (it is not,
unfortunately), then we could solve the community detection problem optimally
with a simple algorithm. To see why, let us perform a spectral decomposition
of D. Let us assume for simplicity that the vertexes 1, . . . , n/2 belong to
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community 1 and the remaining vertexes belong to community 2. Then the
matrix D has the following block structure

p . . . p
... . . .

...
p . . . p

q . . . q
... . . .

...
q . . . q

q . . . q
... . . .

...
q . . . q

p . . . p
... . . .

...
p . . . p


(74)

Note that the matrix D has rank 2. Furthermore the nonzero eigenvalues and
the corresponding eigenvectors are

λ1 = n
p+ q

2
, u1 = [1, . . . , 1︸ ︷︷ ︸

n/2

, 1, . . . , 1︸ ︷︷ ︸
n/2

]T, (75)

and

λ2 = n
p− q

2
, u2 = [1, . . . , 1︸ ︷︷ ︸

n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

]T. (76)

What is important to note here is the form of the second eigenvector u2.
We can tell which community each vertex belongs to by inspecting the sign of
the corresponding entry in the eigenvector. If the entry is positive, then the
corresponding vertex belongs to community 1. If it is negative, it corresponds
to community 2.

Unfortunately, we do not know D = E[A]: we are just given a single
realization of the random matrix A. The question we shall investigate then
is the following. Is A sufficiently close to D for large n so that we can perform
community detection by using the second eigenvector of A (which we know)
rather than that of D (which we do not know)?

4.3.2 Perturbation theory for matrices

To answer this question, we need to understand how the eigenvectors of a matrix
change under matrix perturbations. Indeed, A = D + E, where we can think
of E as a sort of perturbation matrix. Before doing that, let us start with the
eigenvalues.

Theorem 21 (Weyl’s theorem) For every two symmetric matrices S and T
with the same dimension, we have

max
k

|λk(S)− λk(T )| ≤ ∥S − T∥. (77)

So the operator norm controls the stability of the eigenvalues.
A similar result holds for the eigenvectors, although for the result to hold,

we need to assume that the eigenvalues are well separated.
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Theorem 22 (Davis-Kahan theorem) Let S and R be symmetric matrices
with the same dimensions. Fix k and assume that the kth largest eigenvalue of
S is well separated from the rest of the eigenvalues:

min
j ̸=k

|λk − λj | = δ > 0. (78)

Assume that vk(S) and vk(R) are the unit eigenvectors associated to the kth
eigenvalue of S and R, respectively. Let ϕ be the angle between these two
eigenvectors, measured so that this angle is nonnegative. Then

sinϕ ≤ 2∥S −R∥
δ

.

Since we may reverse the sign of vk(R) to ensure that
(
vk(R)

)T
vk(S) ≥ 0, we

conclude that there exists a θ ∈ {−1, 1} such that

∥vk(S)− θvk(R)∥ ≤ 23/2∥S −R∥
δ

. (79)

4.3.3 Spectral clustering

Let us now come back to the community detection problem. Let us set S = D
and T = A = D+E. We next compute the δ parameter for the second eigenvalue
of D:

δ = min
j∈{1,3}

|λ2(D)− λj(D)| = nmin

{
p− q

2
, q

}
︸ ︷︷ ︸

µ

= nµ. (80)

Let u2(D) be the eigenvector of D corresponding to the second eigenvalue,
normalized so that its norm is

√
n (and its entries belong to {+1,−1} as shown

above). Let u2(A) be the eigenvector of A corresponding to the second eigen-
value, and normalized so that its norm is

√
n. It then follows from Theorem 22

that there exists a θ ∈ {−1, 1} such that

1√
n
∥u2(D)− θu2(A)∥ ≤ 23/2∥E∥

nµ
. (81)

Note now that E is sub-Gaussian, because its entries are bounded. Furthermore,
since E is symmetric, it follows from (73) that

∥E∥ ≤ c
√
n (82)

with probability at least 1− 2e−n. Hence, with the same probability,

∥u2(D)− θu2(A)∥ ≤ c

µ
. (83)
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Here, we absorbed the factor 23/2 into the constant c.2 Let us now analyze the
term

∥u2(D)− θu2(A)∥2 =

n∑
k=1

|[u2(D)]k − [θu2(A)]k|2. (84)

Since the entries of the vector u2(D) are in {+1,−1} it follows that each index
in which the two vectors u2(D) and θu2(A) have entries with opposite signs,
contributes to the sum by at least 1. This implies that the number of disagreeing
signs must be bounded by c/µ2. Since this constant does not depend on n, this
result implies that as n grows large, only a vanishing fraction of the vertexes in
the graph will be mis-classified. In other words, we can use the vector u2(A) to
accurately estimate the vector u2(D), whose signs identify the two communities.

To summarize consider the following spectral clustering algorithm.

• Input: graphG with n vertexes and edges drawn according to the stochas-
tic block model

• Output: a partition of the vertexes of G into two communities

1. Compute the adjacency matrix A of the graph G

2. Compute the eigenvector u2(A) corresponding to the second largest eigen-
value of A

3. Partition the vertexes into two communities based on the signs of the
entries of u2(A): If [u2(A)]k > 0, k = 1, . . . , n, put vertex k into the first
community, otherwise in the second.

Then we have just shown that with probability at least 1 − 2e−n, the
spectral clustering algorithm identifies the communities of G correctly up to
c/µ2 misclassified vertexes.

Recall now that µ = min
{

p−q
2 , q

}
. To have a small number of misclassified

vertexes we need µ to be large. This means that the algorithm works well when
the graph is sufficiently dense, i.e., q is sufficiently large, and the probability of
edges within communities and across communities are sufficiently different, i.e.,
p− q is sufficiently large.

4.4 Two-sided bounds on the operator norm

• Source: Verhsynin, Chapter 4.6

We shall now generalize the result obtained in Theorem 19 in two ways:

2Throughout the remainder of these lecture notes, we will use c to denote a constant. Its
value may change at each occurrence.
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• We will provide a sharper, two-sided bound.

• Rather than assuming that all entries of the matrix are independent,
we will just assume that the rows are independent, but there may be
dependence between the entries of the matrix on the same row. This
generalization is important in data-science applications, since the rows
are often obtained by sampling from some high-dimensional distribution.

To get started, we first extend the notion of sub-Gaussianity to random
vectors.

Definition 23 (Sub-Gaussian random vectors) A zero-mean n-dimensional
vector X is sub-Gaussian with parameter σ if for all v ∈ Sn−1, the random
variable vTX is sub-Gaussian with parameter σ.

We say that a random matrix A is row-wise sub-Gaussian with parameter
σ if its rows are independent sub-Gaussian vectors with parameter σ. We shall
also need this auxiliary result.

Theorem 24 (Approximate isometry) Let A be an m×n matrix and δ > 0.
Suppose that

∥ATA− In∥ ≤ max{δ, δ2}. (85)

Then for all x ∈ Rn,

(1− δ)∥x∥ ≤ ∥Ax∥ ≤ (1 + δ)∥x∥. (86)

As a consequence, all singular values of A are between (1− δ) and (1 + δ):

1− δ ≤ sn(A) ≤ s1(A) ≤ 1 + δ. (87)

Here, “approximate isometry” means that the norm of x does not change much
when x is multiplied by A. Our main result is in the next theorem.

Theorem 25 (Two-sided bound on sub-Gaussian matrices) Let A be an
m × n row-wise sub-Gaussian matrix with parameter σ. Assume also that
each row Ak of A satisfies E[AkA

T
k ] = In (i.e., the entries in each row are

uncorrelated, but not necessarily independent). Let ϵ ∈ (0, 1/2), set r = 16σ2,

and δ =
√

2
m t+

√
2n
m log

(
2
ϵ + 1

)
Then

P
[∥∥∥∥ 1

m
ATA− In

∥∥∥∥ ≥ r

1− 2ϵ
max{δ, δ2}

]
≤ 2e−t2 . (88)

If we now combine this result with Theorem 24 and use our absolute constant
notation, we conclude that, under the assumption that m ≥ n,

P
[
1− c

(
t√
m

+

√
n

m

)
≤ sn(A)√

m
≤ s1(A)√

m
≤ 1 + c

(
t√
m

+

√
n

m

)]
≤ 2e−t2 .

(89)
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In particular, if we set t =
√
mγ for some γ > 0,

P
[
1− c

(
γ +

√
n

m

)
≤ sn(A)√

m
≤ s1(A)√

m
≤ 1 + c

(
γ +

√
n

m

)]
≤ 2e−mγ2

. (90)

This result means that when m≫ n, then the matrix A/
√
m is an approximate

isometry in the sense of Theorem 24.
What is surprising perhaps about this theorem is the correction factor

√
m/n.

Indeed the theorem implies that when both m and n are large, so that their
ratio ζ = m/n is approximately constant, then the singular values belong to the
interval [1 − c

√
ζ, 1 + c

√
ζ]. In particular, the value of the ratio ζ determines

the size 2c
√
ζ of the interval. Our intuition, instead, may let us believe that the

singular values converges all to 1 since the covariance matrix of each row vector
is the identity matrix.

Note that Theorem 25 was proven under the simplifying assumption that the
covariance matrix of each row was an identity. As shown in the next section,
this assumption can be easily relaxed.

4.5 Application: Covariance matrix estimation

• Source: Vershyinin, Chapter 4.7

Covariance matrices play a fundamental role in statistics. We will be con-
cerned in this section with the estimation of covariance matrices based on data.
The problem of covariance estimation is well understood in the low-dimensional
regime where the dimensions of the matrix is much smaller than the sample
size. In this section, we will be interested in the high-dimensional setting where
the matrix dimensions are comparable or possibly much larger than the sample
size. This setting arises in many modern relevant applications that deal with
community detection, web searches, and recommended systems.

Say that we have m vectors X1, . . . , Xm sampled independently from an
unknown distribution in Rn. Let us assume for simplicity that this distribution
results in zero-mean vector. This means that if X is drawn from this unknown
distribution, the covariance matrix we are interested in evaluating is given by
Σ = E[XXT ].

Recall

• n: dimensions of all vectors

• m: number of independent samples

Now, to estimate Σ, we can use the sample covariance matrix Σm, which is
computed from the samples X1, . . . , Xm as follows:

Σm =
1

m

m∑
k=1

XkX
T
k . (91)

This estimator is unbiased, i.e., E[Σm] = Σ. It then follows from the law of
large number that Σm converges to Σ almost surely as m → ∞. This leads
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to the following question: how large should m be for the error incurred when
approximating Σ with Σm be small?

We can use Theorem 25 to answer this question. We first normalize the
vectors X1, . . . , Xm so that their covariance matrix is the identity. Specifically,
we set Xk = Σ1/2Ak, k = 1, . . . ,m, where E[AkA

T
k ] = In.

Let now A be the m×n matrix whose rows are the vectors {AT
k }. Note that

Σm =
1

m

m∑
k=1

XkX
T
k =

1

m

m∑
k=1

Σ1/2AkA
T
kΣ

1/2 = Σ1/2(ATA/m)Σ1/2. (92)

Then

∥Σm − Σ∥ = ∥Σ1/2(ATA/m)Σ1/2 − Σ∥ (93)

= ∥Σ1/2(ATA/m− In)Σ
1/2∥ (94)

≤ ∥Σ∥∥(ATA/m− In)∥. (95)

In the last step, we used that for two arbitrary matrices A, B with compatible
dimensions, ∥AB∥ ≤ ∥A∥∥B∥. Assume now that the vectors X1, . . . , Xm are
sub-Gaussian with parameter σ. Then the vectors A1, . . . , Am are sub-Gaussian
with parameter σ at most σ/

√
∥Σ∥. Then we can apply Theorem 25 and obtain

a tail bound on ∥Σm −Σ∥. Specifically, let, as in Theorem 25, δ = c
[
γ +

√
n
m

]
for some γ > 0 (we will not worry about the exact constants.)

Then

P
[
∥Σm − Σ∥

∥Σ∥
≥ c(δ + δ2)

]
≤ P

[
∥(ATA/m− In)∥ ≥ c(max{δ, δ2})

]
≤ 2e−mγ2

.

(96)
Substituting the value of δ, we conclude that

P

[
∥Σm − Σ∥

∥Σ∥
≥ c

(
γ +

√
n

m
+

(
γ +

√
n

m

)2
)]

≤ 2e−mγ2

. (97)

It then follows that this method for estimating the covariance matrix yields
accurate results when the number of samples is large m, as long as the ratio
between the vector dimension n and the number of samples m is sufficiently
small. More precisely, the sample covariance matrix Σm is a consistent estimate
(in the sense of the operator norm) of the population covariance matrix Σ as
long as n/m→ 0 as m→ ∞.

Another way to interpret the result is as follows: roughly speaking, when
m > n,

∥Σm − Σ∥
∥Σ∥

⪅

√
n

m
+
n

m

with high probability. So to have an error less than ϵ ≪ 1 we need about
m ≈ n/ϵ2 points. This is an extremely useful rule of thumb, for practical
applications.
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4.6 Application: clustering of point sets

• Source: Vershynin, Chapter 4.7.1

We consider now a second application of Theorem 25: the problem of clus-
tering. Specifically, we want to partitions points in Rn, so that the distance
between points within the same cluster is small. To keep things simple, we
will consider a very simple model for the random generation of points in Rn,
introduce an algorithm to perform clustering on points generated according to
this model, and then use Theorem 25 to obtain theoretical guarantees on the
performance of the algorithm.

As model we will consider a simpleGaussian mixture model. Fix a vector
u ∈ Rn and consider the following random vector:

X = Bu+W.

Here, B is a Rademacher random variable, which takes value {±1} with the
same probability, and W ∼ N (0, In) and independent of B. The distribution of
X is called Gaussian mixture model with means u and −u. Then we draw m
independent random vectors X1, . . . , Xm that have the same distribution as X.

The distribution induces two clusters, one centered at u and one centered at
−u. Our task is to identify which point belongs to which cluster, on the basis
of the observations of the points X1, . . . , Xm alone. In particular the parameter
u is unknown to us.

To do so, we use a variation of the spectral clustering algorithm we used
for community detection. The idea is as follows. Since all vectors are aligned
with u apart from a Gaussian perturbation, we expect that the eigenvector
of the normalized matrix Σm = 1

m

∑m
k=1XkX

T
k corresponding to the largest

eigenvalue be close to u. Indeed, consider the matrix Σ = E[XXT ] = uuT + In.
It is easy to check that λ1(Σ) = ∥u∥2 +1 and λ2 = · · · = λm = 1. Furthermore,
the eigenvector v1(Σ) associated to the largest eigenvalue of Σ is v1(Σ) = u.
Projecting each point on u we can assess to which cluster it belongs. Specifically,
a negative projection suggests that the point belongs to the first cluster, whereas
a positive projection suggests that the point belongs to the second cluster.

Now, the Davis-Kahan theorem guarantees that if ∥u∥ is sufficiently large,
we can estimate v1(Σ) accurately by computing the eigenvector associated to
the largest eigenvalue of Σm. This suggests the following spectral-clustering
algorithm

Input: X1, . . . , Xm ∈ Rn generated according to the Gaussian mixture model
Output: a partition of the point into two clusters

1. Compute the sample covariance matrix Σm

2. Compute the eigenvector v1(Σm) corresponding to the largest eigenvalue
of Σm.
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Figure 4: Example of points generated according to the Gaussian mixture model.
Here n = 2 and m = 400
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3. For each k = 1, . . . ,m, put Xk in first community if vT1 Xk ≥ 0. Otherwise,
put it into the second community.

The theory developed so far allows us to provide theoretical guarantees on the
performance of this algorithm. Specifically, we have the following result.

Theorem 26 (Clustering for Gaussian mixture model) Consider the Gaus-
sian mixture model just described with the additional (simplifying) assumption
that ∥u∥ = 1. Let v1 denote the unit-norm eigenvector of the matrix Σm

corresponding to the largest eigenvalue. Then there exist a ϕ ∈ {±1} such
that

P

[
∥u− ϕv1∥ ≥ c

(
γ +

√
n

m
+

(
γ +

√
n

m

)2
)]

≤ 2e−mγ2

One way to interpret this result is that, roughly speaking,

∥u− ϕv1∥ ⪅

√
n

m
+
n

m

with high probability. So to have ∥u−ϕv1∥ no larger than ϵ one needs m ≈ n/ϵ2

points. The smaller ϵ, the more accurate is our estimate of u and the more the
performance of our algorithm approaches the performance that can be achieved
in the case in which u was known to us.

4.7 Exercises

Exercise 14 (Alternative expression for the operator norm) Prove that
the operator norm of a symmetric n×n square matrix can be expressed as in (66).

Exercise 15 (Norm of product of matrices) Show that for two matrices
A, B of compatible dimensions, ∥AB∥ ≤ ∥A∥∥B∥.

Exercise 16 (Sub-Gaussian vectors) Let A be a sub-Gaussian vector with
parameter 1 (see Definition 23). Let Σ be a symmetric matrix. Show that ΣA
is sub-Gaussian with parameter at most ∥Σ∥.

Exercise 17 (Computing the operator norm on a cover) Let A be anm×
n matrix and ϵ ∈ [0, 1). Prove that for every ϵ-cover N of the sphere Sn−1, we
have

sup
x∈N

∥Ax∥ ≤ ∥A∥ ≤ 1

1− ϵ
sup
x∈N

∥Ax∥. (98)

Prove also that if A is n × n and symmetric, and ϵ ∈ [0, 1/2), then for every
ϵ-cover N of the sphere Sn−1, we have

sup
x∈N

|xTAx| ≤ ∥A∥ ≤ 1

1− 2ϵ
sup
x∈N

|xTAx|. (99)

Exercise 18 (Norm of symmetric matrices with sub-Gaussian entries)
Prove Theorem 20.
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5 Sparse linear models in high dimensions

5.1 Problem formulation and applications

• source: Wainwright, Chapter 7.1

We consider the following linear model: let x ∈ Rn be an unknown vector,
sometimes called regression vector. Suppose we observe a vector y ∈ Rm

through a (known) measurement matrix A ∈ Rm×n via the linear model

y = Ax+ e

where e ∈ Rm is a noise vector.
This model is one of the most widely used in statistics and has a long history.

In the “low-dimensional” regime where m ≥ n the theory on how to recover x
from y is well known and includes methods such as least square.

We are interested in this chapter in the “high-dimensional” regime where
m ≪ n. As our intuition suggests, if m/n < 1 there is no hope to obtain an
accurate estimate of x, even when there is no noise, unless we impose additional
constraints on the class of vectors x we intend to recover. One practically
relevant assumption on the class of vectors x is that they are sparse, i.e., only
few of the entries of x are nonzero. Under this sparse assumption, even focusing
on the noiseless linear model y = Ax yields nontrivial results. So we will analyze
this model, to start with. In particular, we shall be interested in the structure
of its “sparse solutions”.

Let us start by formalizing the notion of sparsity.

Definition 27 (Support of a vector) The support of a vector x ∈ Rn is the
index set of its nonzero entries:

supp(x) = {j ∈ {1, . . . , n} : xj ̸= 0} (100)

We say that a vector x is s-sparse if at most s of its entries are nonzero, i.e., if

∥x∥0 = |supp(x)| ≤ s. (101)

The quantity ∥x∥0 is usually referred to as ℓ0 norm, although this terminology
is somewhat misleading since this quantity is not a norm. Indeed, it does not
satisfy the absolute homogeneity property: ∥αx∥0 ̸= |α|∥x∥0.

Throughout this chapter, we shall be interested in finding efficient algorithms
for solving the system of equations y = Ax for the scenario in which m ≪ n
and x is s-sparse, with s≪ n. Clearly, if we know the position of the s nonzero
entries, it is possible to recover x perfectly from m = s measurements. What
happens though in the practically relevant case in which the positions of the s
nonzero entries are not known? Our main finding is that there exist numerically
efficient algorithms to solve this problem, provided that m ⪆ s ln(en/s). So if
s≪ n, a number of measurements m much smaller than the dimension n of the
vector x is sufficient to recover x.
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Figure 5: A schematic diagram of the single-pixel camera: a grid of micro-
mirrors reflect some parts of the incoming light beam towards the sensor.

5.1.1 Compressive sensing

Compressive sensing is motivated by the wastefulness of the classical approaches
to acquire sparse signal.

• Source: chapter 1, [6] (available online through Chalmers library)

Digital photography Consider for example the problem of image acquisition.
A raw digital image acquired with a modern digital camera can be as large as
tens of Mbytes. However, we can compressed it down to a .jpeg file of size of
the order of tens of Kbytes (with a compression factor of order 1000), with only
a marginal loss of resolution.

This is possible because digital images are typically sparse when expressed
in a suitable basis (e.g., wavelet transform or discrete-cosine transform).

In the current paradigm, we first acquire the whole image (which can we
think of a vector in some n dimensional space, with n ≫ 1), and then we
use sparsity to store only its s largest nonzero coefficient, when the vector is
expressed in a suitable coordinate system. Compressive sensing is motivated
by the following question. Can we avoid taking so many measurements in the
first place? Can we exploit sparsity already when measuring the signal, i.e.,
in the signal acquisition phase? As we shall see, this is indeed possible. And
this is not only a theoretical possibility. A proof of concept, called the single-
pixel camera operating according to this principle was built in 2006 at Rice
University in the USA. To learn more about the single-pixel camera, see the
following article.

Here is the idea: the camera consists of a micro-array involving a large
number of small mirrors that can be turned on and off individually. The
light from the image is reflected on this micro-array and all reflected beams
from the mirror are focused on a single sensor. The number of active mirrors
impact the intensity of the reflected signal. This hardware essentially computes
inner products between the image and one row of the measurement matrix. By
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flipping the mirrors randomly, one obtains additional measurements. Since the
measurement are performed serially, it is desirable to recover the image using as
few measurements as possible, which leads precisely to the compressive sensing
framework.

Digital cameras built according to this principle are of particular interest
for operation at certain wavelengths outside the visible spectrum, where digital
sensors are hard to build.

Magnetic resonance imaging Magnetic resonance imaging (MRI) is an
important technology in medical imaging, which is used for tasks such as brain
imaging, examination of blood vessels and dynamic heart imaging. In traditional
approaches, the time required to produce high-resolution images can be several
minutes or hours depending on the tasks. This is challenging for patients, and
it also prevents the use of this technique in some situations. For example, it
is difficult to use it on children, who may have difficulties in staying still for
the required long amount of time. In this situation using compressive sensing
techniques, which promise accurate images with much fewer measurements, is
particularly appealing. The signal measured by MRI turns out to be the spatial
Fourier transform of some physical quantity (magnitude of magnetization) from
which an image can be recovered. This spatial Fourier transform is actually
sparse. So we can use compressive sensing techniques to reduce the number of
measurements.

It is worth mentioning that the sparse linear model y = Ax+ e occurs nat-
urally in many other applications beyond compressive sensing, including Gaus-
sian sequence models, signal denoising, signal compression, Gaussian graphical
models, etc. . .

5.2 Efficient signal recovery in the noiseless setting

5.2.1 Minimal number of measurements ad the P0 problem

• source: chapter 2.2 and chapter 2.3, [6] (available online through Chalmers
library)

Consider the linear model y = Ax for the case in which m ≪ n, i.e., the
number of measurements is much smaller than the dimension of the vector x.
We will next investigate under which conditions an s-sparse vector x can be
recovered from y = Ax.

Note that, for a given sparsity level s, the s-sparse vector x can be recovered
from Ax if the vector x is the unique s-sparse solution of Az = y with y = Ax.
In other words, the set {z ∈ Rn : Az = Ax, ∥z∥0 ≤ s} contains only the vector x.
Equivalently, The vector x is the unique solution of the following minimization
problem, which we will refer to as the (P0) problem:

min
z∈Rn

∥z∥0 subject to Az = y. (102)
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We will first discuss under which conditions on the measurement matrix, the
problem (102) admits a unique solution. Then we will discuss how easy it is to
solve (102). Spoiler: not easy at all!

The theorem below provides an answer to the first question. Not surprisingly,
uniqueness of the solution is related to properties of the null-space of A, which
is the set of vectors x ∈ Rn such that Ax = 0. We will denote the null-space by
ker(A).

Theorem 28 (Solution of the (P0) problem) Let A be a m×n matrix with
real-valued entries. The following statements are equivalent:

1. Every s-sparse vector x ∈ Rn is the unique s-sparse solution of Az = Ax.
This means that if Ax = Az and both x and z are s-sparse, then x = z.

2. The null space ker(A) of A does not contain 2s-sparse vectors other than
the zero vector.

3. Every set of 2s columns of A is linearly independent.

Note that the last condition implies that the number m of measurements for
recovering of all s-sparse vectors must satisfy m ≥ 2s. Indeed, if this is not the
case, it is not possible to have 2s linearly independent columns. It turns out
that one con construct deterministic matrices A with exactly m = 2s rows for
which Theorem 28 holds.

For example, the following 2s × n matrix can be shown to satisfy Theorem
28. Let tn > · · · > t2 > t1 > 0. Then set

A =


1 1 · · · 1
t1 t2 · · · tn
...

...
...

t2s−1
1 t2s−1

2 · · · t2s−1
n

 . (103)

Unfortunately, the problem (P0) is hard to solve, especially when n is large.
Indeed, although the constraint describes a simple subspace, the cost function
is non-differentiable and non-convex. Suppose that we know that the vector x
to be reconstructed has precisely s non-zero entries and suppose that we have
designed A so that the problem (P0) has a unique solution for all s-sparse
vectors. Here is how we could recover x from y = Ax. Let AS be the matrix
obtained by keeping only the columns of A that are in the subset S ⊂ {1, . . . , n}
of cardinality s. Then two things can happen.

Either y can be written as a linear combinations of the columns of AS , i.e., y
is in the span of AS or it cannot. If it can be written as a linear combination of
columns of AS , then, since these columns are linearly independent, there exists
a unique vector u ∈ Rs such that y = ASu, and this vector can be found by as
follows

u = (AT
SAS)

−1AT
Sy. (104)

We can then recover x by setting its entries with index in S equal to the
corresponding entries of u and setting to zero all other entries. If y cannot be
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written as a linear combination of columns of AS , we need to choose another set
S and start again. Note that, since the solution of the (P0) problem is unique,
there is only a single set S for which this procedure will return a vector u.

Let AS be the matrix obtained by keeping only the columns of A that are in
the subset S ∈ {1, . . . , n} of cardinality s. Then we can recover x by solving all
square systems of equations AT

SASu = AT
Sy for u ∈ Rs, with S running through

all possible s dimensional subsets of {1, . . . , n}. By assumption, one and only
one of these systems of equations will admit a (unique) solution, whereas all the
other systems will have no solutions. Unfortunately, the number of systems of
equations to solve is

(
n
s

)
, which is very large in the high-dimension regime of

interest in this course. For example, if n = 1000 and s = 10,
(
n
s

)
≥ 1020. This

means that to find x we need to solve up to 1020 systems of equations. Even if
we could solve each one of them very rapidly, say in 0.1 ns, we would still need
more than 300 years!

So this method is completely impractical. It turns out that any method
we may come up with to solve (P0) suffers from the same problem. More
specifically, in the language of computational complexity, one can prove that
the problem (P0) is NP hard.

5.2.2 A convex relaxation of the P0 problem

One way to avoid the computational complexity associated with the (P0) prob-
lem, is to replace the ℓ0 norm in (102) which is noncovex, with the nearest
convex member of in the family of ℓq norms, which is the ℓ1 norm.

Specifically, we define the ℓq “norm” of the vector x ∈ Rn as

∥x∥q =

(
n∑

k=1

|xk|q
)1/q

. (105)

Note that ∥x∥q is a norm in the strict sense only if q ≥ 1.
In the figure below we plotted the shape of the unit balls induced by the ℓq

norm for different values of q. As one can see from the figure, the ℓ1 norm is
convex, whereas the ℓq norms, q < 1, are not.

Replacing ℓ0 with ℓ1 norm is an instance of convex relaxation, where a
noncovex optimization problem is replaced by a convex one. Doing so we obtain
the following (P1) optimization problem

min
z∈Rn

∥z∥1 subject to Az = y. (106)

The optimization problem (P1), which is commonly referred to as basis pur-
suit, is a convex program because the cost function is now convex. The question
we shall answer next is the following: under which conditions is solving (P1)
equivalent to solving (P0)?
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Figure 6: Unit balls induced by different ℓq norms in R2: as q → 0, the ball
becomes increasingly spiky

5.2.3 Restricted null-space property and restricted isometry prop-
erty

• source: Chapter 7.2.2, Wainwright

To answer the question we have just posed, let us first introduce some notation.
Let S be an arbitrary subset of {1, . . . , n} of cardinality s. For a vector x ∈ Rn,
we let xS be the vector in Rn whose entries with index in S coincide with that
of x and whose remaining entries are zero. Similarly, we denote by xSc be the
vector in Rn whose entries with index in Sc coincide with that of x and whose
remaining entries are zero. Here Sc = {1, . . . , n} \ S. The following definition
will turn out useful.

Definition 29 (Restricted null-space property) A matrix A ∈ Rm×n is
said to satisfy the restricted null-space property with respect to a set S ⊂ {1, . . . , n}
if

∥vS∥1 < ∥vSc∥1, for all v ∈ ker(A) \ {0}. (107)

The following theorem gives a necessary and sufficient condition for the problem
(P1) to admit a unique solution.

Theorem 30 ((P1) problem and restricted null-space property) Given
a matrix A ∈ Rm×n, every vector x ∈ Rn supported on the set S is the unique
solution of (P1) with y = Ax, if and only if A satisfies the restricted null-space
property (RNP) with respect to S.

We are still left with the problem of how to verify whether a matrix A satisfies
the restricted null-space property. We will next introduce a definition that
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will help us check whether a matrix satisfies the restricted null-space property.
Specifically, the idea is introduce a definition that can be shown to hold with high
probability (using our concentration of measure tools) for randomly constructed
matrices of appropriate size.

Definition 31 (Restricted isometry property) For a given integer s ∈ {1, . . . , n},
we say that the matrix A ∈ Rm×n satisfies the restricted isometry property (RIP)
of order s with constant δs, if∥∥∥∥ 1

m
AT

SAS − Is

∥∥∥∥ ≤ δs (108)

for all subsets S of size s.

The following result shows that satisfying the restricted isometry property
is a sufficient condition for the restricted null-space property to hold

Theorem 32 (RIP implies RNP) If, for a given matrix A, the RIP constant
of order 2s is bounded as δ2s < 1/3, then the RNP holds for any subset S of
cardinality s.

To establish this result, we will rely on the following three additional results,
which we state separately in the following three lemmas. Note that we will
denote now the ℓ2 norm of a vector x by ∥x∥2 instead of ∥x∥, to avoid confusions
with other norms.

Lemma 33 Let the vector x have s nonzero entries. Then

∥x∥1 ≤
√
s∥x∥2 (109)

Lemma 34 Assume that the matrix A ∈ Rm×n satisfies the RIP of order 2s
with constant δ2s. Let u and v be s-sparse vectors. If supp(u) ∩ supp(v) = ∅,
then

1

m
|uTATAv| ≤ δ2s∥u∥2∥v∥2. (110)

Lemma 35 Let a and b be two s-dimensional vectors such that the largest entry
in absolute value of b is no larger than the smallest entry in absolute value of a.
Then

∥a∥1 ≥
√
s∥b∥2. (111)

5.2.4 Random measurement matrices and restricted isometry prop-
erty

We are now going to show that a large class of random matrices satisfy the
RIP with high probability provided that the number of measurements satisfy
m ⪆ s ln(en/s). We will consider the class of row-wise sub-Gaussian random
matrices we have already encountered in Theorem 25. And indeed, the proof
of our main results will turn out to follow along the same lines as the proof of
Theorem 25. We will start with a preliminary intermediate result that will be
useful to establish the desired result.
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Theorem 36 (Concentration bound for row-wise sub-Gaussian matrices)
Let A be an m × n row-wise sub-Gaussian matrix with parameter σ. Assume
also that each row Ak of A satisfies E[AkA

T
k ] = In (i.e., the entries in each row

are uncorrelated, but not necessarily independent). Let r = 16σ2. Then for all
t ∈ (0, r] and for all x ∈ Rn

P
[∣∣∣∣xT ( 1

m
ATA− In

)
x

∣∣∣∣ ≥ t∥x∥22
]
≤ 2e−ct2m. (112)

Here, as usual c is an absolute constant that depends only on r. In the reminder
of this section, we shall assume that r ≥ 1. This assumption is not fundamental
and can be relaxed with a more refined analysis of the error probability in (112).
Equipped with this preliminary result, we can now state the main result of this
section.

Theorem 37 (RIP for row-sub-Gaussian matrices) Let A be an m × n
random matrix satisfying (112). Then,

P
[∥∥∥∥ 1

m
AT

SAS − Is

∥∥∥∥ > δ for some subset S ⊂ {1, . . . , n} of cardinality s

]
≤ 2e−cδ2m

(113)
provided thatm ≥ cδ−2s log(en/s). This means that, provided thatm ≥ cδ−2s log(en/s),
the matrix A satisfies the RIP of order s with parameter δs ≤ δ with probability
at least 1− 2e−cδ2m.

Recall now that the (P1) problem admits a unique s-sparse solution provided
that the matrix A satisfies the RIP of order 2s with constant δ2s < 1/3. The
theorem we have just proven (with s replaced by 2s and δ set so that it does
not exceed 1/3) shows that this happens with probability no smaller than 1 −
2e−cδ2m, i.e., with high probability!

5.2.5 Generalizations: robustness and stability

In practical applications, the vector x may be sparse only in an approximate
sense, i.e, it may have s components whose absolute value is much larger than
that of the other components. Furthermore, our measurement y may be affected
by noise. It turns out that the theory we have just developed can be extended to
these more practical scenarios. If we have sparsity only in an approximate sense,
we would like our recovery algorithm to return the best s-sparse approximation
of the measured vector. This property is usually referred to as stability.
Specifically, for a given n-dimensional vector x, we shall denote by σs(x) the
error incurred when approximating x by its best s-term representation in the ℓ1
sense:

σs(x) = inf{∥x− z∥1, z ∈ Rn, z is s-sparse}. (114)

If we have noise, i.e., y = Ax+ e, we need to seek the reconstructed sparse
vector that is closest to y in some norm (usually, the ℓ2). A reconstruction
algorithm that is able to return such a vector is called robust.
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To account for the noise, we can modify the (P1) problem as follows:

min
z∈Rn

∥z∥1 subject to ∥Az − y∥2 ≤ η (115)

where η expresses the noise tolerance.
This modified (P1) problem is sometimes referred to as relaxed basis

pursuit. It turns out to be closely related to the so-called Lasso program
in statistics.

In the following theorem, we show that the relaxed basis pursuit problem
is stable and robust whenever the measurement matrix A satisfies the RIP of
order 2s with sufficiently small constant. This implies that m ⪆ s ln(en/s)
measurements are also sufficient for the robust and stable reconstruction of
approximately sparse vectors from noisy measurements.

Theorem 38 (Robust and stable RIP) Assume that the m × n matrix A
satisfies the RIP of order 2s with constant δ2s ≤ 0.63. Then for all x ∈ Rn

and y ∈ Rm with ∥Ax − y∥2 ≤ η, a solution x⋆ of the relaxed basis pursuit
optimization problem (115) approximates the vector x with errors

∥x− x⋆∥1 ≤ c1σs(x) + c2
√
sη (116)

∥x− x⋆∥2 ≤ c1√
s
σs(x) + c2η. (117)

Here, c1 > 0 and c2 > 0 depend only on δ2s.

5.3 Exercises

Exercise 19 (ℓq balls and convexity) Let q ≥ 1. Prove that the function

∥x∥q =

(
n∑

k=1

|xk|q
)1/q

(118)

is convex. Hint: use Minkovski’s inequality.

Exercise 20 (Need for ℓ1 norm) Let A ∈ Rm×n, with m < n. Prove that
there exists a 1-sparse vector x that is not a minimizer of the optimization
problem

min
z∈Rn

∥z∥2 subject to Az = Ax. (119)

Argue that the same is true if we replace the ℓ2 norm with any ℓq norm with
q > 1.

Exercise 21 (Useful lemmas) Prove Lemma 33, Lemma 34 and Lemma 35

Exercise 22 ((P1) algorithm) Implement the (P1) algorithm described in
this chapter. Argue first that this algorithm can be recast as a linear program if
one introduces the (slack) variables z+ and z− where the entries of z+ coincide
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with that of z whenever the entries of z are positive, and are zero otherwise.
Similarly, the entries of z− coincide with that of −z if the entries of z are
negatives and are zero otherwise. This implies that z = z+ − z−. Choose
A ∈ Rn×m with independent random entries equal to 1/

√
m or −1/

√
m, each

with probability 1/2. Test the algorithms on randomly generated s-sparse signals,
where first the support is chosen at random and then the nonzero coefficients. By
varying n, m, s, evaluate the empirical success probability of recovery. Present
your findings in a couple of slides, discussing the agreement with the theory.
Optional: test the modified version of the P1 algorithm (relaxed basis pursuit)
on noisy measurements and approximately sparse vectors. Additional resources:
Consult https: // web. stanford. edu/ ~ boyd/ papers/ admm_ distr_ stats.
html for numerically efficient methods to solve the (P1) problem and similar
problems.
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6 Low-rank matrix recovery

The problem of low rank matrix recovery (a.k.a., low-rank matrix completion) is
the problem of estimating an unknown matrix X ∈ Rn1×n2 based on (possibly
noisy) observations of a subset of its entries. As for the compressive sensing
problem studied in the previous section, this problem is ill-posed unless we
impose further structure on the class of matrices we want to reconstruct. One
practically relevant assumption is that the underlying matrix has low rank, or
can be well-approximated by a low-rank matrix.

Why low rank? : an arbitrary n1×n2 matrix (n1 < n2) is given by specifying
n1n2 parameters. However, if the matrix is of rank r, the number of parameters
reduces to n1r + r(n2 − r) = r(n1 + n2) − r2. To get this bound, observe
that r columns of the matrix should be linearly independent. So I need n1r
parameters to describe them. The remaining n2 − r columns can be expressed
as linear combinations of the first r columns. So I need r parameters to describe
each one of these columns. This means that it should be possible to reconstruct
the matrix by observing roughly r(n1 + n2) entries rather than n1n2.

6.1 Motivating example: the Netflix problem

• Source: chapter 10 [4] (see Example 10.2).

In 2006, Netflix launched a competition for the best algorithm to predict
user ratings for movies, based on previous ratings, without any additional
information about the users. Netflix released partial information about how
some users rated some movies, and asked the competitors to guess the missing
entries. We can organize the available data in a large matrix, where the rows
correspond to the users, and the columns correspond to the movies, and the
matrix entry in position i, j represent the rating assigned by user i to movie j.
The matrix is incomplete and the task given to the competitors was to fill it.
The goal is to provide recommendation to the users based on their ratings, i.e.,
to suggest movies that they have not seen and that they will most likely enjoy
watching. It turns out that the singular values of this recommender matrix
decay fairly rapidly, which means that the matrix can be well-approximated by
a low-rank matrix.

Hence, there is hope to solve this problem. Indeed, the competition was
run for several years and many algorithms with satisfactory performance were
proposed. Eventually, the competition was stopped in 2010 because of privacy
constraints. It turned out that by taking into account additional information
available on movie-rating websites, some researchers managed to reconstruct the
identity of some of the (supposedly anonymous) users in the portion of database
released by Netflix.

In the next section, we will discuss a matrix completion algorithm that is
directly inspired by the compressive sensing problem we studied in the previous
chapter.
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6.2 Efficient matrix recovery

• Source: Chapter 4.6 [6] (see also exercises 6.25 and 9.12 in the same
reference)

We will consider the following setup. A matrix X ∈ Rn1×n2 of rank at most
r is observed via the measurement vector y = A(X) ∈ Rm. Here A(·) is some
linear mapping from Rn1×n2 to Rm. This mapping could for example describe
a mask matrix that allows one to observe only m entries of the matrix X.

As in the compressive sensing case, a natural first approach is to solve
this matrix completion problem by seeking the matrix of lowest rank that is
compatible with the observation:

min
Z∈Rn1×n2

rank(Z) subject to A(Z) = y. (120)

Unfortunately, similar to the (P0) problem in compressive sensing, this problem
turns out to be NP hard. Note indeed that the rank of Z is the ℓ0 norm of the
vector containing its singular values {s1(Z), . . . , sn(Z)} where n = min{n1, n2}.

Motivated by the compressive sensing (P1) problem, we replace the rank
minimization problem (120) with a minimization of the ℓ1 norm of the vector
of the singular values. Specifically, let ∥X∥⋆ be the so called nuclear norm of
X:

∥X∥⋆ =

n∑
k=1

sk(X). (121)

Then we replace the constrained rank minimization problem with the following
constrained nuclear norm minimization problem:

min
Z∈Rn1×n2

∥Z∥⋆ subject to A(Z) = y. (122)

This problem is a convex optimization problem and it is equivalent to a semidef-
inite program, which can be solved efficiently.

Similar to the compressive sensing problem, we can establish conditions
under which every matrix X with rank at most r is the unique solution of
the nuclear norm minimization problem (122).

To state one such condition, we need the following definition.

Definition 39 (Rank-restricted isometry property) A linear map A : Rn1×n2 →
Rm, satifies the rank restricted isometry property of order r with constant δr if

(1− δr)∥X∥2F ≤ ∥A(X)∥2 ≤ (1 + δr)∥X∥2F (123)

for all matrices X ∈ Rn1×n2 of rank at most r.

Here ∥X∥F is the so-called Frobenius norm of X, which is given by the
square root of the sum of the absolute squares of its elements:

∥X∥F =

√∑
i,j

|Xij |2. (124)
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Similar to the compressive sensing setup, one can show that if the mapping
A satisfies the rank restricted isometry property of order 2r with parameter
δ2r < 1/3, then every matrix X ∈ Rn1×n2 of rank at most r is the unique
solution to the nuclear norm minimization problem (122). Furthermore, a
similar result holds also for the case in which the vector of singular values
is only approximately sparse, or the observation are contaminated by additive
noise with a bounded norm.

We next show that randomly designed measurement maps satisfy the rank
restricted isometry property with high probability. Specifically, let us call a lin-
ear measurement map A sub-Gaussian if for every matrix X the m-dimensional
vector A(X) has independent zero-mean sub-Gaussian entries with the same
sub-Gaussian parameter σ. Then one can prove that A satisfies the rank
restricted isometry property of order r with constant δr ≤ δ with probability
1− ϵ provided that

m ≥ c(r(n1 + n2) + log(2ϵ−1)) (125)

where the constant c depends on δ.
So this result shows that to reconstruct the n1 × n2 matrix X of (low) rank

r, it is sufficient to take around r(n1 + n2) ≪ n1 × n2 random measurements.
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7 Sample complexity in statistical learning the-
ory

In this chapter, we will show how the concentration of measure tools developed
so far can be used to understand the performance of general machine learning
algorithms used to perform classification or regression in the supervised setting.
Throughout this chapter, we will be interested in the following learning problem.
We want to develop a learning/prediction rule on the basis of some available
training data, and be able to assess the performance of this prediction rule on
unseen data.

For example, we may train an machine learning algorithm (say a deep neural
network) to perform image classification for, say traffic safety applications, on
the basis of the images available in some data set. Then we would like to predict
how such algorithm would work when shown unseen (maybe real-world) data.

The field that deals with establishing such results is known as statistical
learning theory. This is a very active area of research. We will review in this
chapter some classical results in statistical learning theory. Many researchers are
currently trying to refine these results, so that they become useful in predicting
the performance of modern machine learning algorithms, such as deep neural
networks.

7.1 The statistical learning framework

• Source: [7], Chapter 2 and 3

In the following, we will use the classification problem as a reference problem
to introduce the statistical learning framework. A statistical learning model
consists of the following elements:

• Domain set: This is an arbitrary set X that contains the objects we
may wish to classify or perform regression over. An example of such a
set–the Fashion-MNIST dataset–is provided in Fig. 7. Each object in X
is sometimes referred to as an instance, and X is sometimes referred to
as instance space.

• Label set: This is the set Y of all possible labels assigned to the objects
in X . In the Fashion-MNIST data set considered in Fig 7, the set of labels
has cardinality 10, which is the number of classes in the data set.

• Training data: S = {(x1, y1), . . . , (xm, ym)} is a finite sequence of pairs
in X×Y. Each pair corresponds to a labeled object. For example, the pair
(image 4, t-shirt) in the Fashion-MNIST data set is an example of a labeled
object. These labeled objects are often called training examples, and S
is often referred to as training set. In the following, we shall denote each
pair (xk, yk) by zk. So the training set S contains the training examples
z1, . . . , zm.
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Figure 7: The fashion MNIST data set–a data-set of 70 000 Zalando’s article
images. Each image is a 28 × 28 grayscale image, which belongs to one out of
10 classes
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• The learner output: the goal of the learner is to produce a prediction
rule h : X → Y. This function is also referred to as predictor, hypothesis,
or classifier. For a given algorithm A, we denote by A(S) the hypothesis
that the learning algorithm A returns on the basis of the training sequence
S. The prediction rule is typically assumed to belong to a set H, referred
to as hypothesis class. Choosing this set appropriately turns out to be
very important to enable learning, as we are going to discuss soon.

• A data generation model: We assume that the pairs (xk, yk) = zk
are generated according to some probability distribution PZ on Z = X ×
Y, and that the training examples are extracted independently from this
distribution. The distribution PZ may for example consist of a distribution
PX on X and a deterministic rule that assigns a label y to each x . But we
will consider a more general and practically relevant setup where the label
assigned to each x is described by a probabilistic map. A key assumption
in statistical learning theory is that the distribution PZ is unknown to the
learner.

• Measures of success: We measure the performance of a classifier h by
assessing the quality of its prediction on a random example generated
according to PZ . Specifically, the quality of the prediction provided by
a hypothesis h is measured in terms of a nonnegative loss function ℓ :
H × Z → R+. In a classification problem, it is natural to consider as
loss function the following 0–1 loss. Let z = (x, y) and fix a classifier
h. Then, for the case of 0–1 loss, we have that ℓ(h, z) = 0 if h(x) = y
and ℓ(h, z) = 1 if h(x) ̸= y. In other words, the 0–1 loss is the indicator
function of the error event. In a regression problem, we may instead be
interested in finding some patterns in the data. For example, we may want
to learn a predictor for the relation between wage and educational level
of people living in Gothenburg. In such a case, a measure of success is
better expressed as the square difference between the true label and their
predicted values. So it is natural to set ℓ(h, z) = (h(x) − y)2. We define
the risk function LPZ

(h) to be the expected loss of the classifier, namely

LPZ
(h) = EPZ

[ℓ(h, Z)]. (126)

This quantity is also referred to in the literature as population error,
true error or generalization error of h.

Ideally, we would like to choose a classifier that minimizes LPZ
(h). Unfortu-

nately, this is not possible because the learner does not know PZ and, hence, it
cannot compute the risk function LPZ

(h). We will discuss next a simple strategy
to choose a classifier h.

7.2 Empirical risk minimization

• Source: [7], Chapter 2 and 3
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The learner receives as input the training set S. The goal of the learner is to
choose an h ∈ H on the basis of S that leads to low risk LPZ

(h). To do so, the
learner can compute the performance of h on the training data. Specifically, it
evaluates the training error LS(h) defined as the empirical average of the loss
function over the training set:

LS(h) =
1

n

n∑
k=1

ℓ(h, zk). (127)

This quantity is sometimes referred to also as empirical error or empirical
risk. It is then natural for the learner to choose the hypothesis h that minimizes
the training error. We refer to this learning paradigm as empirical risk
minimization (ERM) and to the corresponding hypothesis as ERM classifier
(or ERM hypothesis):

hS ∈ argmin
h∈H

LS(h). (128)

Note that the notation stresses that the hypothesis may not be unique.
The hope is that an h that minimizes the empirical risk with respect to the

training sample S is also a risk minimizer, or has risk close to the minimum with
respect to the true data distribution as well. In the remainder of this chapter,
we will be interested in determining when this is true.

7.3 ERM and overfitting

• Source: [7], Chapter 2 and 3

Consider the following regression problem. We want to learn the polynomial

function y =
∑D′

d=0 adx
d from noisy observations of points on this polynomial.

It is natural then to choose as H the set of all polynomials up to a given
degree D. The question we investigate next is the following: how does the
ERM classifier perform as a function of D? We consider as loss function the
quadratic loss, so determining the ERM classifier on the basis of some training
samples is equivalent to solving a simple least-square problem, which can be
solved efficiently. Some numerical results are shown in Figure 8.

For the example shown in the figure, one achieves a good fit (i.e., a low risk)
between the predicted polynomial function and the ground truth when D = 3.
If we increase D further, the fit becomes worst. However, the training error
keeps on becoming smaller and smaller, until it reaches 0 when D = 9 and
the blue curve passes through the 10 training data. This phenomenon is called
overfitting and occurs when the selected hypothesis fits the training data too
well.

As shown in the figure, one way to reduce overfitting is to restrict the set of
hypotheses H. Specifically, the learner should choose in advance (before seeing
the data) a set of predictors. By limiting the set of predictors, we introduce a
bias, which is referred to as inductive bias. The inductive bias should ideally
reflect some prior knowledge on the problem to be learned. For example, in
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Figure 8: Estimated polynomial function (in blue) versus the ground truth (in
blue). The training examples are marked as red dots. This figures is taken from
the lecture notes of Prof. Francois Fleuret’s EE-559 Deep Learning course at
EPFL
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the example shown on Fig. 8, the inductive bias may reflect some a priori
information about the rate at which the function to be learned is supposed to
change.

As discussed in the last group project, one possible way to determine pa-
rameters such as D in our example is through cross-validation: a sub-set
of the available training data is held out and used to evaluate empirically the
generalization performance of the chosen classifier.

7.4 PAC learning

• Source: [7], Chapter 3

Let hS be a classifier that is chosen on the basis of S, for example via the
ERM principle, i.e., by minimizing the training error. Since the set S contains
randomly generated training examples, the classifier hS is random, and, hence,
also the risk function LPZ

(hS) is random. We will be interested in charac-
terizing the probability that the difference between the risk LPZ

(hS) and the
risk achieved by the best algorithm h ∈ H, which is given by minh′∈H LPZ

(h′)
does not exceed a certain accuracy parameter ϵ ∈ (0, 1). In particular, we
are interested in determining the minimum number of training examples that
guarantees that this probability is no smaller than some confidence parameter
1− δ with δ ∈ (0, 1).

For a given classifier hS , chosen as a function of S, we interpret the event
LPZ

(hS) > minh′∈H LPZ
(h′)+ϵ as a failure of the learner, whereas if LPZ

(hS) ≤
minh′∈H LPZ

(h′) + ϵ, we view the output of the algorithm as approximately
correct.

To summarize, we want to study under which conditions the following prob-
ability

P
[
LPZ

(hS) ≤ min
h′∈H

LPZ
(h′) + ϵ

]
(129)

is larger or equal to 1 − δ. This probability is evaluated with respect to the
randomness in the generation of the training set S. In other words, we are
interested in determining when the output hypothesis is probably approxi-
mately correct (PAC). We are now ready to provide a formal definition of
PAC learnability.

Definition 40 (PAC learnability) A hypothesis class H is PAC learnable
with respect to a set Z and a loss function ℓ : H × Z → R+ if there exists a
function mH : (0, 1)2 → N and a learning algorithm with the following property:
for every ϵ, δ ∈ (0, 1) and for every distribution PZ over Z, when running the
algorithm on m ≥ mH(ϵ, δ) i.i.d. examples generated using PZ , the algorithm
returns a h ∈ H such that with probability at least 1 − δ over the choice of the
m training examples

LPZ
(h) ≤ min

h′∈H
LPZ

(h′) + ϵ. (130)
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The functionmH : (0, 1)2 → N determines the sample complexity required
for learning H, i.e., how many examples are required to guarantee a probably
approximately correct solution. The sample complexity is a function of the
accuracy ϵ and confidence δ parameters. It also depends on the property of the
hypothesis class. For example, as we will see soon, for a hypothesis class H with
finite cardinality, the sample complexity depends on the logarithm of the size
of H.

7.5 No-free-lunch theorem

In this section, we show that without introducing some restriction of the hypoth-
esis class H, PAC learnability is not possible. Specifically, for every algorithm
A, one can construct a distribution PZ for which learning is hard. To prove that
this is indeed the case, it is sufficient to focus on the simple problem of binary
classification, where Y = {0, 1} and consider the 0–1 loss.

Theorem 41 (No-free-lunch theorem) Let A be a learning algorithm for
the task of binary classification with respect to the 0–1 loss over a domain X .
Let m ≤ |X |/2 be the training size. Then, there exists a distribution PZ over
X ×{0, 1} such that i) There exists a function f : X → {0, 1} with LPZ

(f) = 0.
ii) With probability at least 1/7 over the choice of the training set S of dimension
m, we have that LPZ

(A(S)) ≥ 1/8.

Roughly speaking, this theorem says the following: pick an arbitrary algorithm
for binary classification over X with respect to the 0–1 loss function. Then
one can construct a data distribution PZ , such that there exists a binary clas-
sification function with zero population error, but such that the algorithm we
selected fails to find a binary classification function that has population error
smaller than 1/8 with probability 1/7 even when the algorithm is given as input
a training set containing half of the elements in X .

The following result then follows directly from the no-free-lunch theorem.

Theorem 42 (A class that is not PAC learnable) Let X an infinite do-
main set and let H be the set of all functions from X to {0, 1}. Then H is not
PAC learnable.

Indeed, consider for example the ERM predictor over the hypothesis class
H of all the functions from X to {0, 1}. Note that no prior knowledge (or
inductive bias) is embedded in the choice of this class: every possible function is
considered as a potential candidate. But according to the no-free-lunch theorem,
any algorithm that chooses a hypothesis from H on the basis of m ≤ |X | /2
examples, including the EMR algorithm, will fail on some learning task specified
by a distribution PZ . In particular, if |X | = ∞, no PAC-learnability can be
guaranteed, because m can be chosen arbitrarily large.

7.6 Uniform convergence is sufficient for PAC learnability

• Source: [7], Chapter 4.1
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As already discussed, a practical way to select an algorithm h on the basis of the
set S is to use empirical risk minimization, i.e., to select the h that minimizes the
empirical risk, which can be computed by the learner. Intuitively, if we ask that
all h ∈ H have an empirical risk LS(h) that is close to their true risk LPZ

(h),
we should be able to ensure PAC learnability. In other words, we are asking for
the empirical risk to be close to the true risk uniformly over all hypotheses in
the hypothesis class. This is formalized in the following definition

Definition 43 (ϵ-representative sample) A training set S is called ϵ-representative
if for all h ∈ H,

|LPZ
(h)− LS(h)| ≤ ϵ. (131)

In the next lemma, we show that if a training set if ϵ/2 representative, then the
ERM learning rule returns a “good” hypothesis. By good we mean that the
true risk achieved by the EMR learning rule is at most ϵ away from the true
risk achieved by the best h ∈ H.

Lemma 44 Assume that the training set S is ϵ/2-representative. Then every
ERM hypothesis hS ∈ argminh∈H LS(h) satisfies

LPZ
(hS) ≤ min

h∈H
LPZ

(h) + ϵ. (132)

Now to conclude that the ERM rule is a PAC learner, it suffices to show that
the training set S is ϵ/2-representative with probability at least 1− δ. We will
show next that this is indeed the case for bounded loss functions and when the
hypothesis class H has finite cardinality.

7.7 Finite hypothesis classes are PAC learnable

• Source: [7], Chapter 4.2

Let us assume that H is a finite hypothesis class, i.e., |H| < ∞. Let us also
assume that ℓ(·, ·) is supported on the bounded set [0, 1]. The following result
holds.

Theorem 45 (Sample complexity of finite classes) Under the assumptions
just stated, H is PAC learnable using the ERM algorithm with sample complexity

mH(ϵ, δ) ≤
⌈
2

ϵ2
log

(
2|H|
δ

)⌉
. (133)

7.8 Infinite-size classes can also be learnable

• Source: [7], Chapter 6.1

The requirement that the size of the hypothesis class is finite turns out to be
too stringent. Indeed, hypothesis classes with infinite size are also learnable.
Consider the following example. Let H be the set of threshold functions on the
real line. Namely H = {ha, a ∈ R} where ha(x) = 1 if x < a and ha(x) = 0
otherwise. Clearly H has infinite size. It turns out that H is PAC learnable
using the ERM algorithm.
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Theorem 46 (Learning threshold functions) Let H be the class of thresh-
old functions just defined. Then H is PAC learnable with respect to the 0–1 loss,
using the ERM rule with sample complexity mH(ϵ, δ) ≤

⌈
1
ϵ log

2
δ

⌉
.

Roughly speaking, this hypothesis class is PAC learnable, because it is char-
acterized by a single parameter (i.e., a). Examples similar to this one have
spurred interest in seeking properties of the hypothesis classes that give a correct
characterization of their learnability. The underlying theory has been developed
by Vapnik and Chervonenkis for the case of binary classification problems and
0–1 loss and resulted in a fundamental quantity known as VC dimension. We
will not have the time to formally introduce this quantity in this course. It
suffices to say that the VC dimension of the set of threshold functions over the
real line is 1 and the VC dimension of a finite hypothesis class is no larger than
the logarithm of its cardinality. This leads us to the following fundamental
theorem of PAC learning.

Theorem 47 (Fundamental theorem of statistical learning) Let H be a
hypothesis class of functions from X to the set {0, 1}. Let the loss function be
the 0–1 loss. Assume that the VC dimension of H is finite and equal to d. Then
there exist absolute constant c1 and c2 such that H is PAC learnable with sample
complexity

c1
d+ log(1/δ)

ϵ2
≤ mH(ϵ, δ) ≤ c2

d+ log(1/δ)

ϵ2
(134)

Conversely, if d = ∞, the hypothesis class is not PAC learnable.

7.9 PAC learning and deep neural networks

The reason why modern machine learning algorithms perform so well is still a
puzzle to theoreticians. Answering this question is an important research topic
in theoretical machine learning and an active area of research at Chalmers.
In this section, we will outline through an example why the classical PAC
learning framework that we have just introduced cannot be used to explain
the performance of neural networks.

The VC dimension of a neural network is roughly speaking proportional to
the number of parameters (i.e., weights) of the neural network. But this number
is typically very large: for example, state of the art convolutional deep neural
networks used for image classifications contain around 106 parameters. It then
follows from Theorem 47 that to get an error not exceeding 10−1 one would need
a number of examples on the order of 108. Yet, numerical experiments suggest
that training the network on 104 examples yields the desired accuracy on the
CIFAR-10 image dataset. This shows the existence of a profound discrepancy
between theory and practice. Many approaches are currently under investiga-
tion to address this discrepancy. One such approach is to obtain algorithmic-
dependent bounds that are based on a Bayesian generalization of the PAC
framework (PAC-Bayes) and that rely on information-theoretic tools.
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7.10 Exercises

Note: for Exercises 25, 26, 27, we assume realizability, i.e., that there exists a
h∗ ∈ H with zero population error.

Exercise 23 (True error equals expected empirical error) Let H be a hy-
pothesis class of classifiers over a domain X . Let D be an unknown distribution
over X , and let f be the target hypothesis in H. The data generation rule
PZ is determined by (D, f): each pair (xi, yi) in the training data set S of
size m is generated by first sampling xi according to D and then labeling it by
yi = f(xi). Fix some h ∈ H and consider the 0-1 loss, i.e., for z = (x, y),
ℓ(z, h) = 1{h(x) ̸= y}. Show that the expected value of the empirical error
LS(h) over the choice of the set {xi}mi=1 equals the true error LPZ

(h), i.e.,

E{xi}m
i=1∼Dm [LS(h)] = LPZ

(h). (135)

Exercise 24 (Monotonicity of sample complexity) Let H be a hypothesis
class for a binary classification task. Suppose that H is PAC learnable with
sample complexity mH(·, ·). Show that mH is monotonically nonincreasing in
each of its parameters. That is, show that given δ ∈ (0, 1) and 0 < ϵ1 ≤ ϵ2 < 1,
it holds that mH(ϵ1, δ) ≥ mH(ϵ2, δ). Similarly, show that given ϵ ∈ (0, 1) and
0 < δ1 ≤ δ2 < 1, it holds that mH(ϵ, δ1) ≥ mH(ϵ, δ2).

Exercise 25 (Axis-aligned rectangles) An axis aligned rectangle classifier
in the plane is a classifier that assigns the value 1 to a point if and only if it
is inside a certain rectangle. Formally, given real numbers a1 ≤ b1, a2 ≤ b2,
define the classifier h(a1,b1,a2,b2) by

h(a1,b1,a2,b2)(x1, x2) = 1{a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2} . (136)

With a slight abuse of notation, we call the instances with label 1 the positive
instances, and the instances with label 0 the negative instances. The class of all
axis aligned rectangles in the plane is defined as

H2
rec = {h(a1,b1,a2,b2)(x1, x2) : a1 ≤ b1, a2 ≤ b2}.

Note that this is an infinite-size hypothesis class.

1. Let A be the algorithm that returns the smallest rectangle enclosing all
positive instances in the training set. Show that A is an empirical risk
minimizer (ERM).

2. Show that if A receives a training set of size m ≥
⌈
4 log(4/δ)

ϵ

⌉
then, with

probability of at least 1− δ it returns a hypothesis with error of at most ϵ
with respect to the 0-1 loss. That is, show that H2

rec is PAC learnable with

respect to the 0-1 loss with sample complexity mH2
rec
(ϵ, δ) ≤

⌈
4 log(4/δ)

ϵ

⌉
.

Hint: For some distribution D over X , let R∗ = R(a∗1, b
∗
1, a

∗
2, b

∗
2) be the

rectangle that generates the labels, and let f be the corresponding hypoth-
esis. Let a1 ≥ a∗1 be a number such that the probability mass (with respect
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to D) of the rectangle R1 = R(a∗1, a1, a
∗
2, b

∗
2) is exactly ϵ/4. Similarly, let

b1, a2, b2 be the numbers such that the probability masses of the rectangles
R2 = R(b1, b

∗
1, a

∗
2, b

∗
2), R3 = R(a∗1, b

∗
1, a

∗
2, a2), and R4 = R(a∗1, b

∗
1, b2, b

∗
2)

are all exactly ϵ/4. Let R(S) be the rectangle returned by A for a training
set S. See the illustration in Fig. 9.

• Show that R(S) ⊆ R∗.

• Show that if S contains (positive) instances in all of the rectangles
R1, R2, R3, R4, then the hypothesis returned by A has error of at
most ϵ.

• For each i ∈ {1, 2, 3, 4}, upper bound the probability that S does not
contain an instance from Ri.

• Use the union bound to conclude the argument.

Remark: More generally, the class Hd
rec of axis aligned rectangles in Rd is

PAC learnable with respect to the 0-1 loss with sample complexitymH2
rec
(ϵ, δ) ≤⌈

2d log(2d/δ)
ϵ

⌉
.

Figure 9: Axis-aligned rectangles

Exercise 26 (Singleton) Let X be a discrete domain, and let Hsingleton ≜
{hz : z ∈ X}∪{h−} where hz(x) ≜ 1{x = z} , x ∈ X , and h− is the all-negative
hypothesis, i.e., h−(x) = 0,∀x ∈ X . That is, a hypothesis in Hsingleton labels
negatively all instances in the domain, perhaps except one.

1. Describe an algorithm that implements the ERM rule for learning Hsingleton.

2. Show that Hsingleton is PAC learnable. Provide an upper bound on the
sample complexity.

Exercise 27 (Concentric circles) Let X = R2, Y = {0, 1}, and let Hcirc be
the class of concentric circles in the plane, that is, Hcirc ≜ {hr : r ∈ R+}, where
hr(x) ≜ 1{∥x∥ ≤ r}.
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1. Describe an algorithm that implements the ERM rule for learning Hcirc.

2. Show that Hcirc is PAC learnable with sample complexity bounded bymHcirc
(ϵ, δ) ≤⌈

log(1/δ)
ϵ

⌉
.

Exercise 28 (Bounded loss function) In Theorem 45 (sample complexity of
finite classes) in the lecture notes, we assumed that the range of the loss function
in [0, 1]. Prove that if the range of the loss function is [a, b] then the sample
complexity satisfies

mH(ϵ, δ) ≤
⌈
2(b− a)2

ϵ2
log

(
2|H|
δ

)⌉
. (137)

Hint: Apply Hoeffding’s inequality to obtain

PS [|LPZ
(h)− LS(h)| ≥ ϵ/2] ≤ 2 exp

(
− 2mϵ2

(b− a)2

)
where m is the training set size.
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