MVE550 2023 Lecture 1 Introduction to stochastic processes Course introduction

Petter Mostad

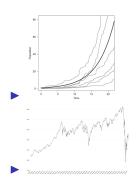
Chalmers University

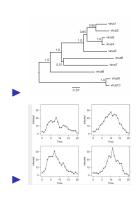
October 30, 2023

Outline

- ► Stochastic processes
- Bayesian inference
- ► Course structure and course content
- Dobrow Appendices A, B, C, D
- ▶ Dowbrow Chapter 1:
 - Conditional probability
 - Conditional expectation

Things one might want to study





Some common features in the examples

- ▶ There is a time involved. Observations "indexed" with a specific time.
- ▶ Possible *goals*: "Understand" something or *make predictions*.
- ▶ My opinion: Prediction is the central goal!
 - To "understand" something usually means to create some kind of underlying model.
 - Any model is a scientific model only if it makes predictions, and it can only be evaluated in terms of the correctness of its predictions.

Deterministic and stochastic models

- Some models make exact predictions (without uncertainty). Example: F = ma.
- ► Deterministic models.
- In most cases, it is more reasonable to make probabilistic predictions.
- All examples above of this type.
- Stochastic models = probabilistic models, making probability predictions.

Stochastic processes

- ▶ A stochastic process is a collection of *random variables* $\{X_t, t \in I\}$.
- ► The set *I* is the *index set* of the process. *I* most often represents a set of *specific times*.
- ▶ The random variables are defined on a common state space S. This set represents the possible values the random variables X_t can have.
- In our four examples, the state spaces might consist of
 - Non-negative counts.
 - Non-negative real numbers.
 - ▶ A set of species, with descriptions of their relevant genetic sequences and their relevant traits.
 - Vectors of numbers describing the amount of infections, and possibly immunity, in the population.
- ► Some further examples of possible state spaces:
 - Vectors of real numbers.
 - Grids of numbers (representing an image?)
 - ▶ 3D grids of numbers (representing the stresses in a building?)
 - ► Infinte sequences of numbers.
 - Continuous functions from [0, 1] to real numbers.

The Markov property

- ▶ Again, the index set *I* will (generally) be some subset of the real numbers (representing time).
- ▶ Generally, for any $t_0 \in I$, the probabilities for outcomes for X_t , where $t > t_0$, may depend on the values of X_s for all $s \le t_0$.
- ▶ The process fulfills the *Markov property* if, for any $t_0 \in I$, whenever X_{t_0} is known, X_t (with $t > t_0$) is independent of the values for X_s for all $s < t_0$.
- Most of the stochastic processes we will deal with in this course will have this property.

What is a Random Variable?

Intuitive definition:

- A variable which has possible values in some state space S, together with probabilities assigned to values and sets of values in the state space.
- ▶ In the course we will generally assume that the state space is a subset of the real numbers. Examples:
 - $\mathcal{S} = \{1, 2, 3, 4\}.$
 - \triangleright S is all positive integers: $\{1, 2, 3, 4, 5, \ldots, \}$.
 - $ightharpoonup \mathcal{S}$ is all non-negative real numbers.
- We separate between discrete and continuous random variables.
- ► For discrete random variables, we assign a probability to each single value in the state space.
- For continous random variables, we focus instead of assigning probabilities to *intervals* of values in the state space.
- ▶ (We will return shortly with more precise definitions.)

Main types of stochastic processes in this course

Dobrow Chapters	Time (1)	State space (S)
2&3: Discrete Markov chains	Discrete	Discrete
4: Branching processes	Discrete	Discrete
5: Markov chain Monte Carlo	Discrete	Continuous/Discrete
6: Poisson processes	Continuous	Discrete
7: Continuous-time Markov chains	Continuous	Discrete
8: Brownian motion	Continuous	Continuous

What do we want to do with the models?

- Easiest approach: Set up model based on general knowledge, make predictions from models.
- Examples:
 - Throwing a dice.
 - Predictions about a card game.
 - Other types of game predictions.
- More useful situation:
 - 1. You have data.
 - You want find a model so that the data could reasonably be produced by it.
 - 3. You want to use this model for predictions of future observations.
- Using data in this way is called inference.

How to find a model that might have produced the data?

Two (main) alternatives:

- Classical inference (or "frequentist" inference):
 - 1. Find estimates for parameters of the model, using the data.
 - 2. To find estimates, use estimators that have desireable properties.
 - Plug the estimates into the models and make predictions from resulting models.
- ► Bayesian inference:
 - 1. Set up a stochastic model making predictions of *observed data* and *possible future data* (or anything else you want to predict).
 - 2. Find the *conditional probability* for the future predictions given the values of the observed data.

Course structure

- ► The Canvas pages!
- ▶ What is expected of you
- ▶ What you can expect from the course

Dobrow Appendices A, B, C, D

- These appendices contain material that you (in principle) should know already.
- ► I strongly recommend that you look through these, at least to find out how much of them you know and how much and what you don't know.
- ► Appendix A: Getting started with R.
- Appendix B: Probability review.
- ▶ Appendix C: Summary of common probability distributions.
- Appendix D: Matrix algebra review.

Random variables

A random variable X with state space S is a real-valued function on S together with a *probability* $Pr(\cdot)$ on S. The probability $Pr(\cdot)$ satisfies

- ▶ $0 \le \Pr(A) \le 1$ for all *measurable* subsets $A \subseteq S$.
- $ightharpoonup \Pr(S) = 1$
- ▶ $Pr(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} Pr(A_i)$ when the A_i are disjoint.
- ▶ These are the Kolmogorov axioms for probability.
- ▶ Measurable subsets are called *events*.
- ▶ What is a *measurable* subset?

Measurable subsets

Let S be any set.

- ightharpoonup A sigma-algebra Ω on S is a set of subsets of S such that
 - \triangleright 0 includes S
 - ▶ If A ∈ Ω then $A^c = S \setminus A ∈ Ω$.
 - ▶ If $A_1, A_2, \ldots, \in \Omega$ then $\bigcup_{i=1}^{\infty} A_i \in \Omega$
- ► The *measurable sets* are those that are in an appropriately defined sigma-algebra.
- ▶ What you need to know for this course: When *S* is finite or countable, all subsets will be measurable. When *S* is some interval of real numbers, there will exist subsets that are not measurable, but we will not be concerned with them.

Computer simulation and probability

- Note: Many random variables and stochastic processes can be represented with a computer program which simulates random output.
- ► The output is then *pseudo-random*
- ► We may then use

Frequency of computer output \approx Probability of output

Making this precise yields powerful computational methods, some of which we will use and/or study in this course.

Conditional probability

▶ Given events A and B, the conditional probability for A given B is

$$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

- ▶ Events A and B are independent if $Pr(A \cap B) = Pr(A)Pr(B)$.
- ▶ Law of total probability: Let $B_1, ..., B_k$ be a sequence of events that *partitions S*. Then

$$\Pr(A) = \sum_{i=1}^{k} \Pr(A \cap B_i) = \sum_{i=1}^{k} \Pr(A \mid B_i) \Pr(B_i).$$

▶ Bayes law for probabilities follows directly from definition above:

$$\Pr(B \mid A) = \frac{\Pr(A \mid B)\Pr(B)}{\Pr(A)}$$

Notation for discrete probability distributions

- For a discrete random variable X we may write Pr(X = x) for $Pr(\{x : X = x\})$.
- For a joint distribution for two discrete random variables X and Y we may write $\Pr(X = x, Y = y)$ for $\Pr(\{x : X = x\} \cap \{y : Y = y\})$ and $\Pr(X = x \mid Y = y)$ for $\Pr(\{x : X = x\} \mid \{y : Y = y\})$
- The formulas of the previous overhead can then be written

$$Pr(X = x \mid Y = y) = \frac{Pr(X = x, Y = y)}{Pr(Y = y)}$$

$$Pr(X = x) = \sum_{y} Pr(X = x \mid Y = y) Pr(Y = y)$$

$$Pr(Y = y \mid X = x) = \frac{Pr(X = x \mid Y = y) Pr(Y = y)}{Pr(X = x)}$$

Do Dobrow Example 1.14.

The generic π -notation

We may use the *generic* π -notation as a shorthand:

- Write $\pi(x)$ for $\Pr(X = x)$, $\pi(x, y)$ for $\Pr(X = x, Y = y)$ and $\pi(x \mid y)$ for $\Pr(X = x \mid Y = y)$.
- The formulas of the previous overhead can then be written

$$\pi(x \mid y) = \frac{\pi(x, y)}{\pi(y)}$$

$$\pi(x) = \sum_{y} \pi(x \mid y)\pi(y)$$

$$\pi(y \mid x) = \frac{\pi(x \mid y)\pi(y)}{\pi(x)}$$

▶ The $\pi(\cdot)$ notation will be used in the Lecture Notes, but is not used in Dobrow.

Conditional densities for continuous distributions

- For a continuous random variable X, we will write its *density* function as $\pi(x)$, extending the generic π notation.
- If we have a joint distribution for continuous random variables X and Y, the joint density function may be written $\pi(x, y)$.
- ▶ We get formulas like

$$\int \pi(x) dx = 1$$
 and $\int \pi(x, y) dy = \pi(x)$.

▶ We may *define* the conditional density as

$$\pi(y \mid x) = \frac{\pi(x, y)}{\pi(x)}.$$

▶ We get similar formulas as for discrete variables:

$$\pi(x) = \int_{y} \pi(x \mid y)\pi(y) dy$$

$$\pi(y \mid x) = \frac{\pi(x \mid y)\pi(y)}{\pi(x)}$$

▶ Do Dobrow Example 1.16.

Expectation and conditional expectation

▶ Recall, the expectation of a discrete random variable is

$$\mathsf{E}(Y) = \sum_{y} y \pi(y)$$

and of a continuous random variable

$$\mathsf{E}(Y) = \int_{Y} y \pi(y) \, dy.$$

▶ The conditional expectation in the discrete case is

$$\mathsf{E}\left(Y\mid X=x\right)=\sum_{y}y\pi(y\mid x)$$

and in the continous case

$$\mathsf{E}(Y\mid X=x)=\int_{Y}y\pi(y\mid x)\,dy.$$

Do Dobrow Example 1.18.

Law of total expectation

▶ If X is a discrete random variable, we get that

$$E(Y) = \sum_{x} E(Y \mid X = x) \pi(x).$$

▶ If X is a continuous random variable we get

$$E(Y) = \int_{X} E(Y \mid X = x) \pi(x) dx$$

In both cases this can be written as

$$\mathsf{E}(Y) = \mathsf{E}(\mathsf{E}(Y \mid X)).$$

▶ Do Dobrow Example 1.21.

Law of total variance

Recall that, by definition,

$$Var(Y) = E((Y - E(Y))^2) = E(Y^2) - E(Y)^2$$
.

Similarly, we have for the conditional variance

$$Var(Y \mid X = x) = E_{Y \mid X = x} ((Y - E(Y \mid X = x))^{2})$$

▶ With these definitions, we can now show the law of total variance:

$$Var(Y) = E(Var(Y \mid X)) + Var(E(Y \mid X))$$

▶ Do Dobrow Example 1.31.