MVE550 2023 Lecture 6 Compendium chapter 2 Inference for Markov chains Hidden Markov Models (HMMs)

Petter Mostad

Chalmers University

November 15, 2023

- We have looked at (discrete-time, homogeneous) Markov Chains X₀, X₁,..., with discrete state spaces.
- The can be described by describing the distribution of X₀ and the transition matrix P.
- In many applications, these parameters of the chain will be unknown, and must be *inferred* from data.
- We will limit ourselves to looking at cases where
 - the distribution of X_0 is known,
 - the state space is finite,
 - the data is an *observed* sequence x_0, x_1, \ldots, x_t from the chain,
 - we use the data and contextual knowledge to make inference about the transition matrix P.
- Following the Bayesian paradigm we do not make an estimate for P, but instead we find a posterior distribution for P, and use this to make predictions.

The Multinomial Dirchlet conjugacy

A vector x = (x₁,...,x_k) of non-negative integers has a Multinomial distribution with parameters n and p, where n > 0 is an integer and p is a probability vector of length k, if ∑_{i=1}^k x_i = n and the probability mass function is given by

$$\pi(x \mid n, p) = \frac{n!}{x_1! x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}.$$

• A vector $p = (p_1, ..., p_k)$ of non-negative real numbers satisfying $\sum_{i=1}^{k} p_i = 1$ has a Dirichlet distribution with parameter vector $\alpha = (\alpha_1, ..., \alpha_k)$, if it has probability density function

$$\pi(p \mid \alpha) = \frac{\Gamma(\alpha_1 + \alpha_2 + \dots + \alpha_k)}{\Gamma(\alpha_1)\Gamma(\alpha_2) \cdot \Gamma(\alpha_k)} p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} \cdots p_k^{\alpha_k - 1}.$$

We have conjugacy in this case: p | x ~ Dirichlet(α + x).
If p ~ Dirichlet(α) then E(p) = α/Σ k = α / Σ k = α / Σ k.

The Multinomial Dirchlet conjugacy, predictions

If $p \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_k)$ and $x \sim \text{Multinomial}(n, p)$, then

The predictive distribution is given by

$$\pi(x) = \frac{n!}{x_1! \dots x_k!} \cdot \frac{\Gamma(\alpha_1 + x_1)}{\Gamma(\alpha_1)} \cdots \frac{\Gamma(\alpha_k + x_k)}{\Gamma(\alpha_k)} \cdot \frac{\Gamma(\sum_{i=1}^k \alpha_i)}{\Gamma(n + \sum_{i=1}^k \alpha_i)}.$$

- For example, if e_i is the vector with 1 at place *i* and zeros elsewhere, then $\pi(x = e_i) = \frac{\alpha_i}{\sum_{j=1}^k \alpha_j}$.
- For example, if x_{new} is a vector of new counts, then, as p | x ~ Dirichlet(x + α), we get

$$\pi(x_{new} = e_i \mid x) = \frac{x_i + \alpha_i}{n + \sum_{j=1}^k \alpha_j}$$

- The α_i in the prior can be called *pseudo-counts*.
- For x_{new} with more than one count, prediction probabilities can be computed with the full formula above.

Inference for *P*: Summary

- Represent the rows P₁,..., P_k of P as random variables: Decide on priors for each, representing contextual knowledge. (One may also use a joint prior!)
- Find the posteriors P_i | data, where the data consists of counts of observed transitions from state i. (With a joint prior one gets a joint posterior!)
- To predict the continuation of a chain: Either first simulate P from the posteriors and predict using this P, or predict one step at a time, adding prediction to data each time.
- In practice, one can use Dirichlet priors. The parameters of the Dirichlet priors are called pseudo-counts. The posteriors are then also Dirichlet distributions.
- If the chain is at state *i* and one uses the prior P_i ∼ Dirichlet(α₁,...,α_k) for row *i* of P, the probabilities of the next state are given by the vector

$$\frac{x+\alpha}{n+\sum_{j=1}^k \alpha_j}$$

Exercise 2.20 from Dobrow:

• Let X_0, X_1, \ldots be a Markov chain with transition matrix

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ p & 1 - p & 0 \end{bmatrix}$$

for some 0 . Let g be the function defined by

$$g(x) = \begin{cases} 0, & \text{if } x = 1 \\ 1, & \text{if } x = 2, 3 \end{cases}$$

If we let $Y_n = g(X_n)$ for $n \ge 0$ is Y_0, Y_1, \ldots a Markov chain?

Common phenomenon: The underlying process may reasonably be a Markov chain, but what we observe is not!

Hidden Markov Models

A Hidden Markov Model (HMM) consists of

- a Markov chain $X_0, \ldots, X_n, \ldots, n$ and
- another sequence Y_0, \ldots, Y_n, \ldots , so that

 $\Pr\left(Y_k \mid Y_0, \ldots, Y_{k-1}, X_0, \ldots, X_k\right) = \Pr\left(Y_k \mid X_k\right)$

Figure: A hidden Markov model.

- In some models we instead have Pr(Y_k | Y₀,...,Y_{k-1},X₀,...,X_k) = Pr(Y_k | Y_{k-1},X_k). There are then extra arrows from y_{k-1} to y_k in the figure above.
- Generally, Y_0, \ldots, Y_k, \ldots , are *observed*, while X_0, \ldots, X_k, \ldots , are *hidden*.
- In our applications, the X_k have a finite state space and the Y_k are discrete.

Example 1: Cough medicine

- Each day *i* a pharmacy sells Y_i bottles of cough medicine. We assume $Y_i \sim \text{Poisson}(X_i)$ where X_i is the "underlying demand", X_i has possible values 10 and 30, and is modelled by a Markov chain with transition matrix $P = \begin{bmatrix} 0.95 & 0.05 \\ 0.2 & 0.8 \end{bmatrix}$.
- A simulation from the flu model. The full line represents the underlying expected demand for cough-medicine, based on whether there is a flu-infection in the area or not. The dots represent the observed actual sales of the medicine.

Can we learn about the presence of flu-infection from sales of cough-medicine?

- DNA sequences may be modelled as Markov chains, with possible values A, C, G, T and the positions along the sequence as the steps in the chain.
- So-called "CpG islands" are sequences where the transition matrix (P₊) appears to be slightly different from the transition matrix (P₋) of of non-CpG islands:

$P_+ =$	0.180	0.274	0.426	0.120	, P _ =	0.300	0.205	0.285	0.210
	0.171	0.500	0.274	0.100		0.522	0.290	0.078	0.302
	0.161	0.339	0.375	0.125		0.248	0.246	0.298	0.208
	0.079	0.355	0.384	0.182		0.177	0.239	0.292	0.292

To detect CpG islands in a new DNA string, we set up a HMM where the underlying variable X_i has the two states: "CpG island" and "non-CpG island".

- When the parameters of the HMM are known, we want to know about the values of the hidden variables X_i. For example:
 - ▶ What is the most likely sequence X₀,..., X_n given the data?
 - ▶ What is the probability distribution for a single *X_i* given the data? We do not focus on these questions here.
- When the parameters of the HMM are not known, we need to infer these from some data.
 - If data with all X_i and Y_i known is available, inference for parameters is based on counts of transitions. (See below).
 - Inference may even be done based only on observations of the Y_i and some assumptions on the X_i (we do not consider this).

- Just as for inference for Markov chains: Consider the transition matrix P and the emission matrix Q (containing probabilities Pr (Y_s = j | X_s = i)) as random variables.
- Decide on priors (a standard choice uses Dirichlet distributions).
- ► To predict: Either: Simulate from the posterior (Dirichlet distributions) for P and Q, and then simulate values for the hidden chain and observable Y's. Or: Simulate one step at a time, and add simulated values to data.