# MVE550 2023 Lecture 6 <br> Compendium chapter 2 <br> Inference for Markov chains Hidden Markov Models (HMMs) 

Petter Mostad<br>Chalmers University

November 15, 2023

## Inference for Markov chains

- We have looked at (discrete-time, homogeneous) Markov Chains $X_{0}, X_{1}, \ldots$, with discrete state spaces.
- The can be described by describing the distribution of $X_{0}$ and the transition matrix $P$.
- In many applications, these parameters of the chain will be unknown, and must be inferred from data.
- We will limit ourselves to looking at cases where
- the distribution of $X_{0}$ is known,
- the state space is finite,
- the data is an observed sequence $x_{0}, x_{1}, \ldots, x_{t}$ from the chain,
- we use the data and contextual knowledge to make inference about the transition matrix $P$.
- Following the Bayesian paradigm we do not make an estimate for $P$, but instead we find a posterior distribution for $P$, and use this to make predictions.


## The Multinomial Dirchlet conjugacy

- A vector $x=\left(x_{1}, \ldots, x_{k}\right)$ of non-negative integers has a Multinomial distribution with parameters $n$ and $p$, where $n>0$ is an integer and $p$ is a probability vector of length $k$, if $\sum_{i=1}^{k} x_{i}=n$ and the probability mass function is given by

$$
\pi(x \mid n, p)=\frac{n!}{x_{1}!x_{2}!\ldots x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}} .
$$

- A vector $p=\left(p_{1}, \ldots, p_{k}\right)$ of non-negative real numbers satisfying $\sum_{i=1}^{k} p_{i}=1$ has a Dirichlet distribution with parameter vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, if it has probability density function

$$
\pi(p \mid \alpha)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdot \Gamma\left(\alpha_{k}\right)} p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{k}^{\alpha_{k}-1} .
$$

- We have conjugacy in this case: $p \mid x \sim \operatorname{Dirichlet}(\alpha+x)$.
- If $p \sim \operatorname{Dirichlet}(\alpha)$ then $\mathrm{E}(p)=\frac{\alpha}{\sum_{j=1}^{k} \alpha_{j}}$.


## The Multinomial Dirchlet conjugacy, predictions

If $p \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $x \sim \operatorname{Multinomial}(n, p)$, then

- The predictive distribution is given by

$$
\pi(x)=\frac{n!}{x_{1}!\ldots x_{k}!} \cdot \frac{\Gamma\left(\alpha_{1}+x_{1}\right)}{\Gamma\left(\alpha_{1}\right)} \cdots \frac{\Gamma\left(\alpha_{k}+x_{k}\right)}{\Gamma\left(\alpha_{k}\right)} \cdot \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\Gamma\left(n+\sum_{i=1}^{k} \alpha_{i}\right)} .
$$

- For example, if $e_{i}$ is the vector with 1 at place $i$ and zeros elsewhere, then $\pi\left(x=e_{i}\right)=\frac{\alpha_{i}}{\sum_{j=1}^{k_{i}} \alpha_{j}}$.
- For example, if $x_{\text {new }}$ is a vector of new counts, then, as $p \mid x \sim \operatorname{Dirichlet}(x+\alpha)$, we get

$$
\pi\left(x_{\text {new }}=e_{i} \mid x\right)=\frac{x_{i}+\alpha_{i}}{n+\sum_{j=1}^{k} \alpha_{j}} .
$$

- The $\alpha_{i}$ in the prior can be called pseudo-counts.
- For $x_{n e w}$ with more than one count, prediction probabilities can be computed with the full formula above.


## Inference for $P$ : Summary

- Represent the rows $P_{1}, \ldots, P_{k}$ of $P$ as random variables: Decide on priors for each, representing contextual knowledge. (One may also use a joint prior!)
- Find the posteriors $P_{i} \mid$ data, where the data consists of counts of observed transitions from state $i$. (With a joint prior one gets a joint posterior!)
- To predict the continuation of a chain: Either first simulate $\tilde{P}$ from the posteriors and predict using this $\tilde{P}$, or predict one step at a time, adding prediction to data each time.
- In practice, one can use Dirichlet priors. The parameters of the Dirichlet priors are called pseudo-counts. The posteriors are then also Dirichlet distributions.
- If the chain is at state $i$ and one uses the prior $P_{i} \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ for row $i$ of $P$, the probabilities of the next state are given by the vector

$$
\frac{x+\alpha}{n+\sum_{j=1}^{k} \alpha_{j}}
$$

## Example: Not quite a Markov chain

Exercise 2.20 from Dobrow:

- Let $X_{0}, X_{1}, \ldots$ be a Markov chain with transition matrix

$$
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
p & 1-p & 0
\end{array}\right]
$$

for some $0<p<1$. Let $g$ be the function defined by

$$
g(x)=\left\{\begin{array}{lc}
0, & \text { if } x=1 \\
1, & \text { if } x=2,3
\end{array}\right.
$$

If we let $Y_{n}=g\left(X_{n}\right)$ for $n \geq 0$ is $Y_{0}, Y_{1}, \ldots$ a Markov chain?

- Common phenomenon: The underlying process may reasonably be a Markov chain, but what we observe is not!


## Hidden Markov Models

- A Hidden Markov Model (HMM) consists of
- a Markov chain $X_{0}, \ldots, X_{n}, \ldots$, , and
- another sequence $Y_{0}, \ldots, Y_{n}, \ldots$, so that

$$
\operatorname{Pr}\left(Y_{k} \mid Y_{0}, \ldots, Y_{k-1}, X_{0}, \ldots, X_{k}\right)=\operatorname{Pr}\left(Y_{k} \mid X_{k}\right)
$$



Figure: A hidden Markov model.

- In some models we instead have
$\operatorname{Pr}\left(Y_{k} \mid Y_{0}, \ldots, Y_{k-1}, X_{0}, \ldots, X_{k}\right)=\operatorname{Pr}\left(Y_{k} \mid Y_{k-1}, X_{k}\right)$. There are then extra arrows from $y_{k-1}$ to $y_{k}$ in the figure above.
- Generally, $Y_{0}, \ldots, Y_{k} \ldots$, are observed, while $X_{0}, \ldots, X_{k} \ldots$, are hidden.
- In our applications, the $X_{k}$ have a finite state space and the $Y_{k}$ are discrete.


## Example 1: Cough medicine

- Each day $i$ a pharmacy sells $Y_{i}$ bottles of cough medicine. We assume $Y_{i} \sim \operatorname{Poisson}\left(X_{i}\right)$ where $X_{i}$ is the "underlying demand", $X_{i}$ has possible values 10 and 30 , and is modelled by a Markov chain with transition matrix $P=\left[\begin{array}{cc}0.95 & 0.05 \\ 0.2 & 0.8\end{array}\right]$.
- A simulation from the flu model. The full line represents the underlying expected demand for cough-medicine, based on whether there is a flu-infection in the area or not. The dots represent the observed actual sales of the medicine.

- Can we learn about the presence of flu-infection from sales of cough-medicine?


## Example 2: CpG islands

- DNA sequences may be modelled as Markov chains, with possible values $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$ and the positions along the sequence as the steps in the chain.
- So-called "CpG islands" are sequences where the transition matrix $\left(P_{+}\right)$appears to be slightly different from the transition matrix $\left(P_{-}\right)$ of of non-CpG islands:

$$
P_{+}=\left[\begin{array}{llll}
0.180 & 0.274 & 0.426 & 0.120 \\
0.171 & 0.368 & 0.274 & 0.188 \\
0.161 & 0.339 & 0.375 & 0.125 \\
0.079 & 0.355 & 0.384 & 0.182
\end{array}\right], P_{-}=\left[\begin{array}{llll}
0.300 & 0.205 & 0.285 & 0.210 \\
0.322 & 0.298 & 0.078 & 0.302 \\
0.248 & 0.246 & 0.298 & 0.208 \\
0.177 & 0.239 & 0.292 & 0.292
\end{array}\right]
$$

- To detect CpG islands in a new DNA string, we set up a HMM where the underlying variable $X_{i}$ has the two states: "CpG island" and "non-CpG island".


## What questions do we want to ask?

- When the parameters of the HMM are known, we want to know about the values of the hidden variables $X_{i}$. For example:
- What is the most likely sequence $X_{0}, \ldots, X_{n}$ given the data?
- What is the probability distribution for a single $X_{i}$ given the data?

We do not focus on these questions here.

- When the parameters of the HMM are not known, we need to infer these from some data.
- If data with all $X_{i}$ and $Y_{i}$ known is available, inference for parameters is based on counts of transitions. (See below).
- Inference may even be done based only on observations of the $Y_{i}$ and some assumptions on the $X_{i}$ (we do not consider this).


## Inference for HMMs: Summary

- Just as for inference for Markov chains: Consider the transition matrix $P$ and the emission matrix $Q$ (containing probabilities $\left.\operatorname{Pr}\left(Y_{s}=j \mid X_{s}=i\right)\right)$ as random variables.
- Decide on priors (a standard choice uses Dirichlet distributions).
- To predict: Either: Simulate from the posterior (Dirichlet distributions) for $P$ and $Q$, and then simulate values for the hidden chain and observable $Y$ 's. Or: Simulate one step at a time, and add simulated values to data.

