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nce for Markov chains
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We have looked at (discrete-time, homogeneous) Markov Chains
Xo, X1, ..., with discrete state spaces.

The can be described by describing the distribution of Xy and the
transition matrix P.

In many applications, these parameters of the chain will be
unknown, and must be inferred from data.
We will limit ourselves to looking at cases where
» the distribution of Xj is known,
the state space is finite,
the data is an observed sequence xp, X1, . . . , Xt from the chain,
we use the data and contextual knowledge to make inference about
the transition matrix P.

vvyy

Following the Bayesian paradigm we do not make an estimate for P,
but instead we find a posterior distribution for P, and use this to
make predictions.
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The Multinomial Dirchlet conjugacy

» A vector x = (x1,...,xk) of non-negative integers has a Multinomial
distribution with parameters n and p, where n > 0 is an integer and
p is a probability vector of length k, if Zf(zl x; = n and the
probability mass function is given by

n!

: X1 X2 Xk
| X!P1P2--~Pk-

mlxlnp)= x11x k

» A vector p = (p1, ..., pk) of non-negative real numbers satisfying
Zle pi = 1 has a Dirichlet distribution with parameter vector
a = (ai,...,ax), if it has probability density function

Mo +as+--+ak) a1 ap1 an—1
71-(p | Oé) - r(Ot]_)r(Olz) . r(Oék) P1 P> pk :

» \We have conjugacy in this case: p | x ~ Dirichlet(a + x).
» If p ~ Dirichlet(«) then E(p) = E%

j=1%j
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The Multinomial Dirchlet conjugacy, predictions

If p ~ Dirichlet(az, ..., ax) and x ~ Multinomial(n, p), then

» The predictive distribution is given by

o Tleatx) | Tlowtx) T(CE00)
xpl.o.xg! Mag) (k) r(”"‘Zf'(:l ;)

For example, if ¢; is the vector with 1 at place i and zeros elsewhere,

then m(x = ¢) = Zf“l o
-

For example, if xpe, is a vector of new counts, then, as
p | x ~ Dirichlet(x + ), we get

Xj + o

T(Xnew = € | X) = ————.
n+ Zj:l Qj

The «; in the prior can be called pseudo-counts.

For xpe,, with more than one count, prediction probabilities can be
computed with the full formula above.
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nce for P: Summary

» Represent the rows Py,..., Py of P as random variables: Decide on
priors for each, representing contextual knowledge. (One may also
use a joint prior!)

» Find the posteriors P; | data, where the data consists of counts of
observed transitions from state i. (With a joint prior one gets a joint
posterior!)

> To predict the continuation of a chain: Either first simulate P from
the posteriors and predict using this P, or predict one step at a time,
adding prediction to data each time.

» In practice, one can use Dirichlet priors. The parameters of the
Dirichlet priors are called pseudo-counts. The posteriors are then
also Dirichlet distributions.

» If the chain is at state / and one uses the prior
P; ~ Dirichlet(ay, ..., ax) for row i of P, the probabilities of the
next state are given by the vector

X+ «

—_——
n+ Zj:l Qj
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Example: Not quite a Markov chain

Exercise 2.20 from Dobrow:

> Let Xp, X1,... be a Markov chain with transition matrix
0 1 0
P=10 0 1
p 1—-p O

for some 0 < p < 1. Let g be the function defined by

(x) = 0, ifx=1
EVI97N1, ifx=23
If we let Y, = g(X,) for n > 0is Yp, Y1,... a Markov chain?

» Common phenomenon: The underlying process may reasonably be a
Markov chain, but what we observe is not!
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Hidden Markov Models

» A Hidden Markov Model (HMM) consists of
» a Markov chain Xy, ..., Xp,...,, and
» another sequence Yp,..., Y,..., so that

Pr(Yk | Y(),...,kal,Xo,...,Xk) = PI’(Yk ‘ Xk)

Figure: A hidden Markov model.

» In some models we instead have
PI’(Yk | Yo, ey Yk717X0; . ,Xk) = Pr(Yk | kal,Xk). There are
then extra arrows from y,_1 to yi in the figure above.

» Generally, Yg,..., Yk..., are observed, while Xo,..., Xk ..., are
hidden.

» In our applications, the X, have a finite state space and the Y/ are
discrete.
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Example 1: Cough medicine

» Each day i/ a pharmacy sells Y; bottles of cough medicine. We
assume Y; ~ Poisson(X;) where X; is the “underlying demand”, X;
has possible values 10 and 30, and is modelled by a Markov chain

0.95 0.05

0.2 038 ]

» A simulation from the flu model. The full line represents the
underlying expected demand for cough-medicine, based on whether
there is a flu-infection in the area or not. The dots represent the
observed actual sales of the medicine.

with transition matrix P = [

40

20
I T |

0 10 20 30 40 50 60

» Can we learn about the presence of flu-infection from sales of
cough-medicine?
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Example 2: CpG islands

» DNA sequences may be modelled as Markov chains, with possible
values A, C, G, T and the positions along the sequence as the steps
in the chain.

» So-called “CpG islands” are sequences where the transition matrix
(P4) appears to be slightly different from the transition matrix (P-)
of of non-CpG islands:

0.180 0.274 0.426 0.120 0.300 0.205 0.285 0.210
p. — 0.171 0.368 0.274 0.188 p — 0.322 0.298 0.078 0.302
* 7 lo161 0339 0.375 0.125|' T [0.248 0.246 0.298 0.208

0.079 0.355 0.384 0.182 0.177 0.239 0.292 0.292

» To detect CpG islands in a new DNA string, we set up a HMM
where the underlying variable X; has the two states: “CpG island"”
and “non-CpG island”.
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What questions do we want to ask?

» When the parameters of the HMM are known, we want to know
about the values of the hidden variables X;. For example:
» What is the most likely sequence Xy, ..., X, given the data?
» What is the probability distribution for a single X; given the data?
We do not focus on these questions here.
» When the parameters of the HMM are not known, we need to infer
these from some data.
> If data with all X; and Y; known is available, inference for
parameters is based on counts of transitions. (See below).
» Inference may even be done based only on observations of the Y; and
some assumptions on the X; (we do not consider this).
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Inference for HMMs: Summary

» Just as for inference for Markov chains: Consider the transition
matrix P and the emission matrix Q@ (containing probabilities
Pr(Ys =j | Xs = i)) as random variables.

» Decide on priors (a standard choice uses Dirichlet distributions).

> To predict: Either: Simulate from the posterior (Dirichlet
distributions) for P and @, and then simulate values for the hidden
chain and observable Y’s. Or: Simulate one step at a time, and add
simulated values to data.
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