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Inference for Markov chains

▶ We have looked at (discrete-time, homogeneous) Markov Chains
X0,X1, . . . , with discrete state spaces.

▶ The can be described by describing the distribution of X0 and the
transition matrix P.

▶ In many applications, these parameters of the chain will be
unknown, and must be inferred from data.

▶ We will limit ourselves to looking at cases where
▶ the distribution of X0 is known,
▶ the state space is finite,
▶ the data is an observed sequence x0, x1, . . . , xt from the chain,
▶ we use the data and contextual knowledge to make inference about

the transition matrix P.

▶ Following the Bayesian paradigm we do not make an estimate for P,
but instead we find a posterior distribution for P, and use this to
make predictions.
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The Multinomial Dirchlet conjugacy

▶ A vector x = (x1, . . . , xk) of non-negative integers has a Multinomial
distribution with parameters n and p, where n > 0 is an integer and
p is a probability vector of length k , if

∑k
i=1 xi = n and the

probability mass function is given by

π(x | n, p) = n!

x1!x2! . . . xk !
px11 px22 . . . pxkk .

▶ A vector p = (p1, . . . , pk) of non-negative real numbers satisfying∑k
i=1 pi = 1 has a Dirichlet distribution with parameter vector

α = (α1, . . . , αk), if it has probability density function

π(p | α) = Γ(α1 + α2 + · · ·+ αk)

Γ(α1)Γ(α2) · Γ(αk)
pα1−1
1 pα2−1

2 · · · pαk−1
k .

▶ We have conjugacy in this case: p | x ∼ Dirichlet(α+ x).

▶ If p ∼ Dirichlet(α) then E(p) = α∑k
j=1 αj

.
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The Multinomial Dirchlet conjugacy, predictions

If p ∼ Dirichlet(α1, . . . , αk) and x ∼ Multinomial(n, p), then

▶ The predictive distribution is given by

π(x) =
n!

x1! . . . xk !
· Γ(α1 + x1)

Γ(α1)
· · · Γ(αk + xk)

Γ(αk)
·

Γ(
∑k

i=1 αi )

Γ(n +
∑k

i=1 αi )
.

▶ For example, if ei is the vector with 1 at place i and zeros elsewhere,
then π(x = ei ) =

αi∑k
j=1 αj

.

▶ For example, if xnew is a vector of new counts, then, as
p | x ∼ Dirichlet(x + α), we get

π(xnew = ei | x) =
xi + αi

n +
∑k

j=1 αj

.

▶ The αi in the prior can be called pseudo-counts.

▶ For xnew with more than one count, prediction probabilities can be
computed with the full formula above.
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Inference for P : Summary

▶ Represent the rows P1, . . . ,Pk of P as random variables: Decide on
priors for each, representing contextual knowledge. (One may also
use a joint prior!)

▶ Find the posteriors Pi | data, where the data consists of counts of
observed transitions from state i . (With a joint prior one gets a joint
posterior!)

▶ To predict the continuation of a chain: Either first simulate P̃ from
the posteriors and predict using this P̃, or predict one step at a time,
adding prediction to data each time.

▶ In practice, one can use Dirichlet priors. The parameters of the
Dirichlet priors are called pseudo-counts. The posteriors are then
also Dirichlet distributions.

▶ If the chain is at state i and one uses the prior
Pi ∼ Dirichlet(α1, . . . , αk) for row i of P, the probabilities of the
next state are given by the vector

x + α

n +
∑k

j=1 αj

.
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Example: Not quite a Markov chain

Exercise 2.20 from Dobrow:

▶ Let X0,X1, . . . be a Markov chain with transition matrix

P =

0 1 0
0 0 1
p 1− p 0


for some 0 < p < 1. Let g be the function defined by

g(x) =

{
0, if x = 1
1, if x = 2, 3

If we let Yn = g(Xn) for n ≥ 0 is Y0,Y1, . . . a Markov chain?

▶ Common phenomenon: The underlying process may reasonably be a
Markov chain, but what we observe is not!
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Hidden Markov Models

▶ A Hidden Markov Model (HMM) consists of
▶ a Markov chain X0, . . . ,Xn, . . . ,, and
▶ another sequence Y0, . . . ,Yn, . . . , so that

Pr (Yk | Y0, . . . ,Yk−1,X0, . . . ,Xk) = Pr (Yk | Xk)

Figure: A hidden Markov model.

▶ In some models we instead have
Pr (Yk | Y0, . . . ,Yk−1,X0, . . . ,Xk) = Pr (Yk | Yk−1,Xk). There are
then extra arrows from yk−1 to yk in the figure above.

▶ Generally, Y0, . . . ,Yk . . . , are observed, while X0, . . . ,Xk . . . , are
hidden.

▶ In our applications, the Xk have a finite state space and the Yk are
discrete.
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Example 1: Cough medicine

▶ Each day i a pharmacy sells Yi bottles of cough medicine. We
assume Yi ∼ Poisson(Xi ) where Xi is the “underlying demand”, Xi

has possible values 10 and 30, and is modelled by a Markov chain

with transition matrix P =

[
0.95 0.05
0.2 0.8

]
.

▶ A simulation from the flu model. The full line represents the
underlying expected demand for cough-medicine, based on whether
there is a flu-infection in the area or not. The dots represent the
observed actual sales of the medicine.
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▶ Can we learn about the presence of flu-infection from sales of
cough-medicine?
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Example 2: CpG islands

▶ DNA sequences may be modelled as Markov chains, with possible
values A, C, G, T and the positions along the sequence as the steps
in the chain.

▶ So-called “CpG islands” are sequences where the transition matrix
(P+) appears to be slightly different from the transition matrix (P−)
of of non-CpG islands:

P+ =


0.180 0.274 0.426 0.120
0.171 0.368 0.274 0.188
0.161 0.339 0.375 0.125
0.079 0.355 0.384 0.182

 , P− =


0.300 0.205 0.285 0.210
0.322 0.298 0.078 0.302
0.248 0.246 0.298 0.208
0.177 0.239 0.292 0.292

 .

▶ To detect CpG islands in a new DNA string, we set up a HMM
where the underlying variable Xi has the two states: “CpG island”
and “non-CpG island”.
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What questions do we want to ask?

▶ When the parameters of the HMM are known, we want to know
about the values of the hidden variables Xi . For example:
▶ What is the most likely sequence X0, . . . ,Xn given the data?
▶ What is the probability distribution for a single Xi given the data?

We do not focus on these questions here.

▶ When the parameters of the HMM are not known, we need to infer
these from some data.
▶ If data with all Xi and Yi known is available, inference for

parameters is based on counts of transitions. (See below).
▶ Inference may even be done based only on observations of the Yi and

some assumptions on the Xi (we do not consider this).
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Inference for HMMs: Summary

▶ Just as for inference for Markov chains: Consider the transition
matrix P and the emission matrix Q (containing probabilities
Pr (Ys = j | Xs = i)) as random variables.

▶ Decide on priors (a standard choice uses Dirichlet distributions).

▶ To predict: Either: Simulate from the posterior (Dirichlet
distributions) for P and Q, and then simulate values for the hidden
chain and observable Y ’s. Or: Simulate one step at a time, and add
simulated values to data.
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