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Introduction

» Many real phenomena can be described as developing with a
tree-like structure, for example
> Growth of cells.
» Spread of viruses or other pathogens in a population.
» Nuclear chain reactions.
» Spread of funny cat videos on the internet.
» Spread of a surname over generations.

» The process with which one node gives rise to “children” can be
described as random: We will assume the probabilistic properties of
this process is the same for all nodes.

» We will assume all nodes are organized into generations.

v

We are only concerned with the size of each generation.

» How large are the generations? How much does the size vary? Will
the process become extinct?
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Branching processes

A branching process is discrete Markov chain 2y, Z1,...,Z,,... where

>

>
>
>

the state space is the non-negative integers
Zy=1
0 is an absorbing state

Z, is the sum X + Xo +--- + Xz, _,, where the X; are independent
random non-negative integers all with the same offspring
distribution. In other words

Zy_1
Z,=> X
i=1

Connecting each of the Z, individuals in generation n with their
offspring in generation n+ 1 we get a tree illustrating the branching
process.

The offspring distribution is described by the probability vector
a=(aop,ai,...,) where a; = Pr(X; = ).
To focus on the interesting cases we assume ag > 0 and ag + a; < 1.
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Expected generation size

|

Note that the state O is absorbing: This absorbtion is called
extinction.

As ap > 0, all nonzero states are transient.

Define = E(X;) = -2 jaj (the expected number of children).
Then we may compute that
Z,,_l Zn—l
E(Z)=E(Y_X|=E[E({D_X|Z1]||=E(Z1)n
i=1 i=1

We get directly that
E(Zy) = u"E(Z) = p"

We subdivide Branching processes into three types:
» Subcritical if p < 1. Then lim,— E(Z,) = 0.
> Critical if 4 = 1. Then lim,— o E(Z,) = 1.
» Supercritical if p > 1. Then lim,— o E (Z,) = 0.
We can prove that if lim,_ E(Z,) = 0 then the probability of

extinction is 1.
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Variance of the generation size

» Continue with u = E(X;) denoting the expected number of children
and let 0> = Var (X;) denote the variance of the number of children.

» Using the law of total variance, we get

Var(Z,) = Var(E(Z,]| Z,—1)) +E(Var(Z, | Z,-1))
Zy1

= Var|E Zx,-|z,,,1 +E | Var Zx,-|zn,1
i i=1

— Var(uZn,l)—&—E(UQZn 1)
= p?Var(Z,_1) + o™t

» From this we prove by induction, for n > 1,

n if =1
Var (Z,) = o*p IZN—{ o2 (" — 1) /(e — 1) if//j#l
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The probability of extinction

Let X denote an offspring variable and e the probability of extinction.
» Using first step analysis:

= Z Pr (X = k) Pr (extinction of process with k roots)

= i Pr(X = k) e = Ex[e*] = Gx(e)

where we define the Probability generating function Gx(s) as

> Let e,
step analysis:

€n

Gx(s) = Ex[SX].
be the probability of extinction by generation n. Using first

Z Pr (X = k) Pr (extinction by gen. n— 1, with k roots)

Z Pr(X = k) el ; = Ex[e) 1] = Gx(en-1)
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Extinction probability theorem

» If s = x is any positive solution to Gx(s) = s then e < x:

» Proof: We have 0 = ¢y < x. We have that Gx is an increasing
function, as

So < S1 = Z Pr( SO < ZPI’ 51 = Gx(S()) < Gx(Sl)
k=0

Thus applying Gx repeatedly we get e, < x and thus
e=Ilim,,- e, <x.

» We have proved the following THEOREM:
Let G be the probability generating function for the offspring
distribution for a branching process. The probability of eventual
extinction is the smallest positive root of the equation s = G(s).
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Probability generating functions

» For any discrete random variable X taking values in {0,1,2,...,}
define the probability generating function G(s), or Gx(s), as

G(s)=E(sX) =) s"Pr(X=k).
k=0

> The series converges absolutely for |s| < 1. We assume s is a real
number in [0, 1].

> We get a 1-1 correspondence between probability vectors on
{0,1,2,...,} and functions represented by a series where the
non-negative coefficients sum to 1.

» Specifically, if Gx(s) = Gy(s) for all s for random variables X and
Y then X and Y have the same distribution.

» The correspondence of X with Gx(s) provides an important and
useful computational tool.
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What does Gx(s) look like?

» Gx(1) =1 and Gx(0) = Pr(X =0).

> We get
G'(s) = i ks* TPr(X = k) =E (xsx—l)
G"(s) = i k(k —1)s*2Pr(X = k) = E (X(X - 1)5’“2)
k=2
G"(s) = i k(k —1)(k —2)s* *Pr(X = k) =E (X(x —1)(X — 2)5X—3)

x
I
w

> So the derivatives are non-negative, and G’(s) and G"(s) are
positive for s € (0,1).
» Below: Gx(s) when X ~ Binomial(10,0.2). (Diagonal added)

00 02 04 06 08 10
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Some properties of probability generating functions

> To go from X to Gx(s): Compute the infinite (or finite) sum.
> To go from Gx(s) to X: Use that we have

» If X and Y are independent,
Gxiy(s) =E(s*TY) =E(s*sY) = E(s¥) E(s") = Gx(s)Gy(s)

> E(X) = G'(1)
> E(X(X —1)) = G"(1).
» As a consequence, Var (X) = G”(1) + G'(1) — G'(1)2.
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Probability generating functions for Branching processes

Assume we have a Branching process 2y, Z1, ..., with independent
random variables X counting the offspring at each node.

> Write G,(s) = Gz,(s) = E(s?) and G(s) = Gx(s) = E (s%).
> We get

Gu(s) = E (52551)@) —E (E (SZflilxk | Zn71>)

Zy1
E{E|J]s™ 121 | =E(G(s)) = Goo1(G(s)).

> As Go(s) = E (s%) =s, it follows that
Gn(s) = G(G(G(...G(s)...))), with n iterations of the G function.

> This result can be applied (e.g., numerically) to compute G,(s).
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Extinction probability theorem, with addition

» THEOREM

Let G be the probability generating function for the offspring
distribution for a branching process. The probability of eventual
extinction is the smallest positive root of the equation s = G(s).
Also, if the process is critical (u = 1) then the extinticion probability
is 1.
Proof of last sentence: In the critical case,

G'(1)=EX)=p=1
As G"(s) > 0 for s € (0,1), we get that G'(s) < 1 for s € (0,1),
and £(G(s) —s) <0 fors € (0,1).

As G(1) — 1 =0 for any probability generating function, we get that
G(s) = s has its smallest positive root at 1.
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