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Introduction

▶ Many real phenomena can be described as developing with a
tree-like structure, for example
▶ Growth of cells.
▶ Spread of viruses or other pathogens in a population.
▶ Nuclear chain reactions.
▶ Spread of funny cat videos on the internet.
▶ Spread of a surname over generations.

▶ The process with which one node gives rise to “children” can be
described as random: We will assume the probabilistic properties of
this process is the same for all nodes.

▶ We will assume all nodes are organized into generations.

▶ We are only concerned with the size of each generation.

▶ How large are the generations? How much does the size vary? Will
the process become extinct?
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Branching processes

A branching process is discrete Markov chain Z0,Z1, . . . ,Zn, . . . where

▶ the state space is the non-negative integers

▶ Z0 = 1

▶ 0 is an absorbing state

▶ Zn is the sum X1 + X2 + · · ·+ XZn−1 , where the Xj are independent
random non-negative integers all with the same offspring
distribution. In other words

Zn =

Zn−1∑
i=1

Xi .

▶ Connecting each of the Zn individuals in generation n with their
offspring in generation n + 1 we get a tree illustrating the branching
process.

▶ The offspring distribution is described by the probability vector
a = (a0, a1, . . . , ) where aj = Pr (Xi = j).

▶ To focus on the interesting cases we assume a0 > 0 and a0 + a1 < 1.
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Expected generation size

▶ Note that the state 0 is absorbing: This absorbtion is called
extinction.

▶ As a0 > 0, all nonzero states are transient.
▶ Define µ = E (Xi ) =

∑∞
j=0 jaj (the expected number of children).

▶ Then we may compute that

E (Zn) = E

Zn−1∑
i=1

Xi

 = E

E

Zn−1∑
i=1

Xi | Zn−1

 = E (Zn−1)µ.

▶ We get directly that

E (Zn) = µn E (Z0) = µn

▶ We subdivide Branching processes into three types:
▶ Subcritical if µ < 1. Then limn→∞ E (Zn) = 0.
▶ Critical if µ = 1. Then limn→∞ E (Zn) = 1.
▶ Supercritical if µ > 1. Then limn→∞ E (Zn) = ∞.

▶ We can prove that if limn→∞ E (Zn) = 0 then the probability of
extinction is 1.
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Variance of the generation size

▶ Continue with µ = E (Xi ) denoting the expected number of children
and let σ2 = Var (Xi ) denote the variance of the number of children.

▶ Using the law of total variance, we get

Var (Zn) = Var (E (Zn | Zn−1)) + E (Var (Zn | Zn−1))

= Var

E

Zn−1∑
i=1

Xi | Zn−1

+ E

Var

Zn−1∑
i=1

Xi | Zn−1


= Var (µZn−1) + E

(
σ2Zn−1

)
= µ2 Var (Zn−1) + σ2µn−1

▶ From this we prove by induction, for n ≥ 1,

Var (Zn) = σ2µn−1
n−1∑
k=0

µk =

{
nσ2 if µ = 1
σ2µn−1(µn − 1)/(µ− 1) if µ ̸= 1
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The probability of extinction

Let X denote an offspring variable and e the probability of extinction.
▶ Using first step analysis:

e =
∞∑
k=0

Pr (X = k) Pr (extinction of process with k roots)

=
∞∑
k=0

Pr (X = k) ek = EX [e
X ] = GX (e)

where we define the Probability generating function GX (s) as

GX (s) = EX [s
X ].

▶ Let en be the probability of extinction by generation n. Using first
step analysis:

en =
∞∑
k=0

Pr (X = k) Pr (extinction by gen. n − 1, with k roots)

=
∞∑
k=0

Pr (X = k) ekn−1 = EX [e
X
n−1] = GX (en−1)
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Extinction probability theorem

▶ If s = x is any positive solution to GX (s) = s then e ≤ x :

▶ Proof: We have 0 = e0 < x . We have that GX is an increasing
function, as

s0 < s1 ⇒
∞∑
k=0

Pr (X = k) sk0 <

∞∑
k=0

Pr (X = k) sk1 ⇒ GX (s0) < GX (s1).

Thus applying GX repeatedly we get en < x and thus
e = limn→∞ en ≤ x .

▶ We have proved the following THEOREM:
Let G be the probability generating function for the offspring
distribution for a branching process. The probability of eventual
extinction is the smallest positive root of the equation s = G (s).
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Probability generating functions

▶ For any discrete random variable X taking values in {0, 1, 2, . . . , }
define the probability generating function G (s), or GX (s), as

G (s) = E
(
sX

)
=

∞∑
k=0

sk Pr (X = k) .

▶ The series converges absolutely for |s| ≤ 1. We assume s is a real
number in [0, 1].

▶ We get a 1-1 correspondence between probability vectors on
{0, 1, 2, . . . , } and functions represented by a series where the
non-negative coefficients sum to 1.

▶ Specifically, if GX (s) = GY (s) for all s for random variables X and
Y then X and Y have the same distribution.

▶ The correspondence of X with GX (s) provides an important and
useful computational tool.
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What does GX (s) look like?

▶ GX (1) = 1 and GX (0) = Pr (X = 0).
▶ We get

G ′(s) =
∞∑
k=1

ksk−1 Pr (X = k) = E
(
XsX−1

)
G ′′(s) =

∞∑
k=2

k(k − 1)sk−2 Pr (X = k) = E
(
X (X − 1)sX−2

)
G ′′′(s) =

∞∑
k=3

k(k − 1)(k − 2)sk−3 Pr (X = k) = E
(
X (X − 1)(X − 2)sX−3

)
▶ So the derivatives are non-negative, and G ′(s) and G ′′(s) are

positive for s ∈ (0, 1).
▶ Below: GX (s) when X ∼ Binomial(10, 0.2). (Diagonal added)
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Some properties of probability generating functions

▶ To go from X to GX (s): Compute the infinite (or finite) sum.

▶ To go from GX (s) to X : Use that we have

P(X = j) =
G (j)(0)

j!
.

▶ If X and Y are independent,

GX+Y (s) = E
(
sX+Y

)
= E

(
sX sY

)
= E

(
sX

)
E
(
sY

)
= GX (s)GY (s)

▶ E (X ) = G ′(1)

▶ E (X (X − 1)) = G ′′(1).

▶ As a consequence, Var (X ) = G ′′(1) + G ′(1)− G ′(1)2.
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Probability generating functions for Branching processes

Assume we have a Branching process Z0,Z1, . . . , with independent
random variables X counting the offspring at each node.

▶ Write Gn(s) = GZn(s) = E
(
sZn

)
and G (s) = GX (s) = E

(
sX

)
.

▶ We get

Gn(s) = E
(
s
∑Zn−1

k=1 Xk

)
= E

(
E
(
s
∑Zn−1

k=1 Xk | Zn−1

))
= E

E

Zn−1∏
k=1

sXk | Zn−1

 = E
(
G (s)Zn−1

)
= Gn−1(G (s)).

▶ As G0(s) = E
(
sZ0

)
= s, it follows that

Gn(s) = G (G (G (. . .G (s) . . . ))), with n iterations of the G function.

▶ This result can be applied (e.g., numerically) to compute Gn(s).
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Extinction probability theorem, with addition

▶ THEOREM
Let G be the probability generating function for the offspring
distribution for a branching process. The probability of eventual
extinction is the smallest positive root of the equation s = G (s).
Also, if the process is critical (µ = 1) then the extinticion probability
is 1.

▶ Proof of last sentence: In the critical case,

G ′(1) = E(X ) = µ = 1.

As G ′′(s) > 0 for s ∈ (0, 1), we get that G ′(s) < 1 for s ∈ (0, 1),
and d

ds (G (s)− s) < 0 for s ∈ (0, 1).
As G (1)− 1 = 0 for any probability generating function, we get that
G (s) = s has its smallest positive root at 1.
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