MVE550 2023 Lecture 7 Dobrow Chapter 4
 Introduction to branching processes
 Probability generating functions

Petter Mostad
Chalmers University

November 17, 2023

Introduction

- Many real phenomena can be described as developing with a tree-like structure, for example
- Growth of cells.
- Spread of viruses or other pathogens in a population.
- Nuclear chain reactions.
- Spread of funny cat videos on the internet.
- Spread of a surname over generations.
- The process with which one node gives rise to "children" can be described as random: We will assume the probabilistic properties of this process is the same for all nodes.
- We will assume all nodes are organized into generations.
- We are only concerned with the size of each generation.
- How large are the generations? How much does the size vary? Will the process become extinct?

Branching processes

A branching process is discrete Markov chain $Z_{0}, Z_{1}, \ldots, Z_{n}, \ldots$ where
the state space is the non-negative integers

- $Z_{0}=1$
- 0 is an absorbing state
- Z_{n} is the sum $X_{1}+X_{2}+\cdots+X_{Z_{n-1}}$, where the X_{j} are independent random non-negative integers all with the same offspring distribution. In other words

$$
Z_{n}=\sum_{i=1}^{Z_{n-1}} x_{i}
$$

- Connecting each of the Z_{n} individuals in generation n with their offspring in generation $n+1$ we get a tree illustrating the branching process.
- The offspring distribution is described by the probability vector $a=\left(a_{0}, a_{1}, \ldots,\right)$ where $a_{j}=\operatorname{Pr}\left(X_{i}=j\right)$.
- To focus on the interesting cases we assume $a_{0}>0$ and $a_{0}+a_{1}<1$.

Expected generation size

- Note that the state 0 is absorbing: This absorbtion is called extinction.
- As $a_{0}>0$, all nonzero states are transient.
- Define $\mu=\mathrm{E}\left(X_{i}\right)=\sum_{j=0}^{\infty} j a_{j}$ (the expected number of children).
- Then we may compute that

$$
\mathrm{E}\left(Z_{n}\right)=\mathrm{E}\left(\sum_{i=1}^{Z_{n-1}} X_{i}\right)=\mathrm{E}\left(\mathrm{E}\left(\sum_{i=1}^{z_{n-1}} X_{i} \mid Z_{n-1}\right)\right)=\mathrm{E}\left(Z_{n-1}\right) \mu
$$

- We get directly that

$$
\mathrm{E}\left(Z_{n}\right)=\mu^{n} \mathrm{E}\left(Z_{0}\right)=\mu^{n}
$$

- We subdivide Branching processes into three types:
- Subcritical if $\mu<1$. Then $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=0$.
- Critical if $\mu=1$. Then $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=1$.
- Supercritical if $\mu>1$. Then $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=\infty$.
- We can prove that if $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=0$ then the probability of extinction is 1 .

Variance of the generation size

- Continue with $\mu=\mathrm{E}\left(X_{i}\right)$ denoting the expected number of children and let $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$ denote the variance of the number of children.
- Using the law of total variance, we get

$$
\begin{aligned}
\operatorname{Var}\left(Z_{n}\right) & =\operatorname{Var}\left(\mathrm{E}\left(Z_{n} \mid Z_{n-1}\right)\right)+\mathrm{E}\left(\operatorname{Var}\left(Z_{n} \mid Z_{n-1}\right)\right) \\
& =\operatorname{Var}\left(\mathrm{E}\left(\sum_{i=1}^{Z_{n-1}} X_{i} \mid Z_{n-1}\right)\right)+\mathrm{E}\left(\operatorname{Var}\left(\sum_{i=1}^{Z_{n-1}} X_{i} \mid Z_{n-1}\right)\right) \\
& =\operatorname{Var}\left(\mu Z_{n-1}\right)+\mathrm{E}\left(\sigma^{2} Z_{n-1}\right) \\
& =\mu^{2} \operatorname{Var}\left(Z_{n-1}\right)+\sigma^{2} \mu^{n-1}
\end{aligned}
$$

- From this we prove by induction, for $n \geq 1$,

$$
\operatorname{Var}\left(Z_{n}\right)=\sigma^{2} \mu^{n-1} \sum_{k=0}^{n-1} \mu^{k}= \begin{cases}n \sigma^{2} & \text { if } \mu=1 \\ \sigma^{2} \mu^{n-1}\left(\mu^{n}-1\right) /(\mu-1) & \text { if } \mu \neq 1\end{cases}
$$

The probability of extinction

Let X denote an offspring variable and e the probability of extinction.

- Using first step analysis:

$$
\begin{aligned}
e & =\sum_{k=0}^{\infty} \operatorname{Pr}(X=k) \operatorname{Pr}(\text { extinction of process with } k \text { roots }) \\
& =\sum_{k=0}^{\infty} \operatorname{Pr}(X=k) e^{k}=\mathrm{E}_{X}\left[e^{X}\right]=G_{X}(e)
\end{aligned}
$$

where we define the Probability generating function $G_{X}(s)$ as

$$
G_{X}(s)=E_{X}\left[s^{X}\right]
$$

- Let e_{n} be the probability of extinction by generation n. Using first step analysis:

$$
\begin{aligned}
e_{n} & =\sum_{k=0}^{\infty} \operatorname{Pr}(X=k) \operatorname{Pr}(\text { extinction by gen. } n-1, \text { with } k \text { roots }) \\
& =\sum_{k=0}^{\infty} \operatorname{Pr}(X=k) e_{n-1}^{k}=E_{X}\left[e_{n-1}^{X}\right]=G_{X}\left(e_{n-1}\right)
\end{aligned}
$$

Extinction probability theorem

- If $s=x$ is any positive solution to $G_{X}(s)=s$ then $e \leq x$:
- Proof: We have $0=e_{0}<x$. We have that G_{X} is an increasing function, as
$s_{0}<s_{1} \Rightarrow \sum_{k=0}^{\infty} \operatorname{Pr}(X=k) s_{0}^{k}<\sum_{k=0}^{\infty} \operatorname{Pr}(X=k) s_{1}^{k} \Rightarrow G_{X}\left(s_{0}\right)<G_{X}\left(s_{1}\right)$.
Thus applying G_{X} repeatedly we get $e_{n}<x$ and thus $e=\lim _{n \rightarrow \infty} e_{n} \leq x$.
- We have proved the following THEOREM:

Let G be the probability generating function for the offspring distribution for a branching process. The probability of eventual extinction is the smallest positive root of the equation $s=G(s)$.

Probability generating functions

- For any discrete random variable X taking values in $\{0,1,2, \ldots$, define the probability generating function $G(s)$, or $G_{X}(s)$, as

$$
G(s)=\mathrm{E}\left(s^{X}\right)=\sum_{k=0}^{\infty} s^{k} \operatorname{Pr}(X=k) .
$$

- The series converges absolutely for $|s| \leq 1$. We assume s is a real number in $[0,1]$.
- We get a 1-1 correspondence between probability vectors on $\{0,1,2, \ldots$,$\} and functions represented by a series where the$ non-negative coefficients sum to 1 .
- Specifically, if $G_{X}(s)=G_{Y}(s)$ for all s for random variables X and Y then X and Y have the same distribution.
- The correspondence of X with $G_{X}(s)$ provides an important and useful computational tool.

What does $G_{X}(s)$ look like?

- $G_{X}(1)=1$ and $G_{X}(0)=\operatorname{Pr}(X=0)$.
- We get

$$
\begin{aligned}
G^{\prime}(s) & =\sum_{k=1}^{\infty} k s^{k-1} \operatorname{Pr}(X=k)=\mathrm{E}\left(X s^{x-1}\right) \\
G^{\prime \prime}(s) & =\sum_{k=2}^{\infty} k(k-1) s^{k-2} \operatorname{Pr}(X=k)=\mathrm{E}\left(X(X-1) s^{X-2}\right) \\
G^{\prime \prime \prime}(s) & =\sum_{k=3}^{\infty} k(k-1)(k-2) s^{k-3} \operatorname{Pr}(X=k)=\mathrm{E}\left(X(X-1)(X-2) s^{X-3}\right)
\end{aligned}
$$

- So the derivatives are non-negative, and $G^{\prime}(s)$ and $G^{\prime \prime}(s)$ are positive for $s \in(0,1)$.
- Below: $G_{X}(s)$ when $X \sim \operatorname{Binomial}(10,0.2)$. (Diagonal added)

Some properties of probability generating functions

- To go from X to $G_{X}(s)$: Compute the infinite (or finite) sum.
- To go from $G_{X}(s)$ to X : Use that we have

$$
P(X=j)=\frac{G^{(j)}(0)}{j!}
$$

- If X and Y are independent,

$$
G_{X+Y}(s)=\mathrm{E}\left(s^{X+Y}\right)=\mathrm{E}\left(s^{X} s^{Y}\right)=\mathrm{E}\left(s^{X}\right) \mathrm{E}\left(s^{Y}\right)=G_{X}(s) G_{Y}(s)
$$

- $\mathrm{E}(X)=G^{\prime}(1)$
- $\mathrm{E}(X(X-1))=G^{\prime \prime}(1)$.
- As a consequence, $\operatorname{Var}(X)=G^{\prime \prime}(1)+G^{\prime}(1)-G^{\prime}(1)^{2}$.

Probability generating functions for Branching processes

Assume we have a Branching process Z_{0}, Z_{1}, \ldots, with independent random variables X counting the offspring at each node.

- Write $G_{n}(s)=G_{Z_{n}}(s)=\mathrm{E}\left(s^{Z_{n}}\right)$ and $G(s)=G_{X}(s)=\mathrm{E}\left(s^{X}\right)$.
- We get

$$
\begin{aligned}
G_{n}(s) & =\mathrm{E}\left(s^{\Sigma_{k=1}^{Z_{n-1}} x_{k}}\right)=\mathrm{E}\left(\mathrm{E}\left(s^{\sum_{k=1}^{Z_{n-1}} x_{k}} \mid Z_{n-1}\right)\right) \\
& =\mathrm{E}\left(\mathrm{E}\left(\prod_{k=1}^{Z_{n-1}} s^{X_{k}} \mid Z_{n-1}\right)\right)=\mathrm{E}\left(G(s)^{Z_{n-1}}\right)=G_{n-1}(G(s)) .
\end{aligned}
$$

- As $G_{0}(s)=E\left(s^{Z_{0}}\right)=s$, it follows that $G_{n}(s)=G(G(G(\ldots G(s) \ldots)))$, with n iterations of the G function.
- This result can be applied (e.g., numerically) to compute $G_{n}(s)$.

Extinction probability theorem, with addition

- THEOREM

Let G be the probability generating function for the offspring distribution for a branching process. The probability of eventual extinction is the smallest positive root of the equation $s=G(s)$. Also, if the process is critical $(\mu=1)$ then the extinticion probability is 1 .

- Proof of last sentence: In the critical case,

$$
G^{\prime}(1)=\mathrm{E}(X)=\mu=1
$$

As $G^{\prime \prime}(s)>0$ for $s \in(0,1)$, we get that $G^{\prime}(s)<1$ for $s \in(0,1)$, and $\frac{d}{d s}(G(s)-s)<0$ for $s \in(0,1)$.
As $G(1)-1=0$ for any probability generating function, we get that $G(s)=s$ has its smallest positive root at 1 .

