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Bayesian inference for Branching processes

▶ Say you have observed some data, and you want to find a branching
process (of the type discussed in Dobrow) that appropriately models
the data, to then make predictions. How?

▶ A branching process is characterized by the probability vector
a = (a0, a1, a2, . . . , ) where ai is the probabilty for i offspring in the
offspring process.

▶ Let y1, y2, . . . , yn be the counts of offspring in n observations of the
offspring process. If a is given we have the likelihood

π(y1, . . . , yn | a) =
n∏

i=1

ayi

▶ To complete the model, we need a prior on a.
▶ As a has infinite length and we have a finite number of observations,

we need to put information from the context into the prior, to get a
sensible posterior.

▶ Some alternatives:
▶ You assume the offspring distribution has a particular parametric

form, and you learn about the parameters.
▶ You assume that ai = 0 for i ≥ m for some m.
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Example: Using a Binomial likelihood

▶ Assume the offspring process is Binomial(N, p) for some parameter
p and a fixed known N. We get the likelihood

π(y1, . . . , yn | p) =
n∏

i=1

Binomial(yi ;N, p).

▶ A possibility is to use a prior p ∼ Beta(α, β). Writing S =
∑n

i=1 yi
we get the posterior

p | data ∼ Beta(α+ S , β + nN − S).

▶ More generally, if π(p) = f (p) for any positive function integrating
to 1 on [0, 1], we get the posterior

π(p | data) ∝p Beta(p; 1 + S , 1 + nN − S)f (p)

▶ We can then for example compute numerically the posterior
probability that the branching process is supercritical, i.e., that
Pr (p > 1/N | data), with (see R computations)∫ 1

1/N

π(p | data) dp =

∫ 1

1/N
Beta(1 + S , 1 + nN − S)f (p) dp∫ 1

0
Beta(1 + S , 1 + nN − S)f (p) dp
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Example: Using a Multinomial likelihood

▶ Assume there is a maximum of N offspring and that now
p = (p0, p1, . . . , pN) is an unknown probability vector so that pi is
the probability of i offspring. We get the likelihood

π(y1, . . . , yn | p) ∝p Multinomial(c ; p)

where c = (c0, . . . , cN) is the vector of counts in the data of cases
with 0, . . . ,N offspring, respectively.

▶ If we use the prior p ∼ Dirichlet(α) where α = (α0, . . . , αN) is a
vector of pseudocounts, we get the posterios

p | data ∼ Dirichlet(α+ c).

with expectation

E (pi | data) =
αi + ci∑N

j=0(αj + cj)

▶ Note that Dirichlet(1, . . . , 1) corresponds to the uniform distribution.
▶ We can simulate from the posterior to investigate for example the

probability of being supercritical.
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Part 2: Using MCMC for Bayesian inference

We have some data y1, . . . , yn and we want to make a probability
prediction for ynew .
▶ We (often) define a parameter θ, and a probabilistic model so that

y1, . . . , yn, ynew are all conditionally independent given θ:

π(y1, . . . , yn, ynew , θ) =

[
n∏

i=1

π(yi | θ)

]
π(ynew | θ)π(θ)

▶ Then

π(ynew | y1, . . . , yn) =

∫
θ

π(ynew | θ)π(θ | y1, . . . , yn) dθ

= Eθ|y1,...,yn (π(ynew | θ))

▶ Upshot (using ”law of large numbers”): We can make predictions by
▶ Simulating θ1, . . . , θk from the posterior π(θ | y1, . . . , yn).
▶ Averaging

Eθ|y1,...,yn (π(ynew | θ)) ≈ 1

k

k∑
j=1

π(ynew | θj).
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Finding a sample from the posterior

▶ So far, we have mostly used conjugacy to be able to find and
simulate from the posterior.

▶ Alternative, we have used numerical computations of integrals.

▶ What if you cannot use conjugacy, and your integral is too
high-dimensional to compute well numerically?

▶ Markov Chain Monte Carlo (MCMC) comes to the rescue!

▶ Idea of MCMC:
▶ Start with a function f (θ) that is proportinal to the posterior, e.g.,

f (θ) = π(data | θ)π(θ).
▶ Define an ergodic Markov chain so that its limiting distribution is

the distribution with density or probability mass function proportional
to f .

▶ Use the values of the Markov chain as an approximate sample in a
computation like above.

▶ It turns out that, in the limit as the length of the chain increases
towards ∞, the approximation goes to the expected value above.
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Continuous variable Markov chains

▶ A discrete time continuous state space Markov chain is a sequence

X0,X1, . . .

of continuous random variables with the property that, for all n > 0,

π(Xn+1 | X0,X1, . . . ,Xn) = π(Xn+1 | Xn)

▶ We work with time-homogeneous Markov chains, so that the density
π(Xn+1 | Xn) is the same for all n.

▶ Ergodicity is defined in a similar way as for discrete state space
chains: The chain needs to be irreducible, aperiodic, and positive
recurrent.

▶ The fundamental limit theorem for ergodic Markov chains holds: In
the limit as n → ∞, the chain approaches a unique positive
stationary distribution.
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The Metropolis-Hastings algorithm

Given a function f (θ), how can we define an ergodic Markov chain with
limiting distribution with density (or pmf) proportional to f (θ)?

▶ Define a proposal distribution q(θ∗ | θ) so that, for any given θ, it is
possible to simulate a θ∗.

▶ Run the Metropolis-Hastings algorithm:
▶ Choose or simulate some (reasonable) θ(0).
▶ For i = 0, 1, 2 . . . :

▶ Simulate a proposal θ∗ using q(θ∗ | θ(i)).
▶ Compute the acceptance probability

ρ = min

(
1,

f (θ∗)q(θ(i) | θ∗)
f (θ(i))q(θ∗ | θ(i))

)
.

▶ With probability ρ, set θ(i+1) = θ∗, otherwise set θ(i+1) = θ(i).

▶ The MH algorithm defines a Markov chain θ(0), θ(1), θ(2), . . .

▶ IF this Markov chain is ergodic, its limiting distribution will have
density proportional to f (θ).
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Toy example

▶ Old example from compendium Chapter 1:

y | p ∼ Binomial(17, p)

p ∼ Beta(2.3, 4.1)

ynew | p ∼ Binomial(3, p)

▶ We would like to compute Pr (ynew = 1 | y = 4).

▶ In this toy example we can do so
▶ directly, using conjugacy
▶ using discretization
▶ using numerical integration

▶ As an illustration (see R) we may also use MCMC.
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Second example

▶ We have observed the data (xi , yi ):

(2, 0.32), (3, 0.57), (4, 0.61), (6, 0.83), (9, 0.91)

▶ The context gives us the following model
▶ We expect the data to follow y = f (x , θ1) =

exp(θ1x)−1
exp(θ1x)+1

where θ1 is an
unknown positive parameter.

▶ We have observed the data with added noise Normal(0, θ22) where θ2
is an unknown positive parameter.

▶ We assume a flat prior on θ1 > 0 and θ2 > 0.

▶ We get the posterior

π(θ | data) ∝θ

5∏
i=1

Normal(yi ; f (xi , θ1), θ
2
2).

▶ Use MCMC to simulate from the value of y when x = 10 (see R).
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