MVE550 2023 Lecture 8
 Compendium Chapter 3
 Inference for Branching processes. MCMC for Bayesian inference

Petter Mostad
Chalmers University

November 21, 2023

Bayesian inference for Branching processes

- Say you have observed some data, and you want to find a branching process (of the type discussed in Dobrow) that appropriately models the data, to then make predictions. How?
- A branching process is characterized by the probability vector $a=\left(a_{0}, a_{1}, a_{2}, \ldots,\right)$ where a_{i} is the probabilty for i offspring in the offspring process.
- Let $y_{1}, y_{2}, \ldots, y_{n}$ be the counts of offspring in n observations of the offspring process. If a is given we have the likelihood

$$
\pi\left(y_{1}, \ldots, y_{n} \mid a\right)=\prod_{i=1}^{n} a_{y_{i}}
$$

- To complete the model, we need a prior on a.
- As a has infinite length and we have a finite number of observations, we need to put information from the context into the prior, to get a sensible posterior.
- Some alternatives:
- You assume the offspring distribution has a particular parametric form, and you learn about the parameters.
- You assume that $a_{i}=0$ for $i \geq m$ for some m.

Example: Using a Binomial likelihood

- Assume the offspring process is Binomial (N, p) for some parameter p and a fixed known N. We get the likelihood

$$
\pi\left(y_{1}, \ldots, y_{n} \mid p\right)=\prod_{i=1}^{n} \operatorname{Binomial}\left(y_{i} ; N, p\right)
$$

- A possibility is to use a prior $p \sim \operatorname{Beta}(\alpha, \beta)$. Writing $S=\sum_{i=1}^{n} y_{i}$ we get the posterior

$$
p \mid \text { data } \sim \operatorname{Beta}(\alpha+S, \beta+n N-S)
$$

- More generally, if $\pi(p)=f(p)$ for any positive function integrating to 1 on $[0,1]$, we get the posterior

$$
\pi(p \mid \text { data }) \propto_{p} \operatorname{Beta}(p ; 1+S, 1+n N-S) f(p)
$$

- We can then for example compute numerically the posterior probability that the branching process is supercritical, i.e., that $\operatorname{Pr}(p>1 / N \mid$ data), with (see R computations)

$$
\int_{1 / N}^{1} \pi(p \mid \text { data }) d p=\frac{\int_{1 / N}^{1} \operatorname{Beta}(1+S, 1+n N-S) f(p) d p}{\int_{0}^{1} \operatorname{Beta}(1+S, 1+n N-S) f(p) d p}
$$

Example: Using a Multinomial likelihood

- Assume there is a maximum of N offspring and that now $p=\left(p_{0}, p_{1}, \ldots, p_{N}\right)$ is an unknown probability vector so that p_{i} is the probability of i offspring. We get the likelihood

$$
\pi\left(y_{1}, \ldots, y_{n} \mid p\right) \propto_{p} \text { Multinomial }(c ; p)
$$

where $c=\left(c_{0}, \ldots, c_{N}\right)$ is the vector of counts in the data of cases with $0, \ldots, N$ offspring, respectively.

- If we use the prior $\mathrm{p} \sim \operatorname{Dirichlet}(\alpha)$ where $\alpha=\left(\alpha_{0}, \ldots, \alpha_{N}\right)$ is a vector of pseudocounts, we get the posterios

$$
p \mid \text { data } \sim \text { Dirichlet }(\alpha+c)
$$

with expectation

$$
\mathrm{E}\left(p_{i} \mid \text { data }\right)=\frac{\alpha_{i}+c_{i}}{\sum_{j=0}^{N}\left(\alpha_{j}+c_{j}\right)}
$$

- Note that Dirichlet $(1, \ldots, 1)$ corresponds to the uniform distribution.
- We can simulate from the posterior to investigate for example the probability of being supercritical.

Part 2: Using MCMC for Bayesian inference

We have some data y_{1}, \ldots, y_{n} and we want to make a probability prediction for $y_{\text {new }}$.

- We (often) define a parameter θ, and a probabilistic model so that $y_{1}, \ldots, y_{n}, y_{\text {new }}$ are all conditionally independent given θ :

$$
\pi\left(y_{1}, \ldots, y_{n}, y_{\text {new }}, \theta\right)=\left[\prod_{i=1}^{n} \pi\left(y_{i} \mid \theta\right)\right] \pi\left(y_{\text {new }} \mid \theta\right) \pi(\theta)
$$

- Then

$$
\begin{aligned}
\pi\left(y_{\text {new }} \mid y_{1}, \ldots, y_{n}\right) & =\int_{\theta} \pi\left(y_{\text {new }} \mid \theta\right) \pi\left(\theta \mid y_{1}, \ldots, y_{n}\right) d \theta \\
& =\mathrm{E}_{\theta \mid y_{1}, \ldots, y_{n}}\left(\pi\left(y_{\text {new }} \mid \theta\right)\right)
\end{aligned}
$$

- Upshot (using "law of large numbers"): We can make predictions by
- Simulating $\theta_{1}, \ldots, \theta_{k}$ from the posterior $\pi\left(\theta \mid y_{1}, \ldots, y_{n}\right)$.
- Averaging

$$
\mathrm{E}_{\theta \mid y_{1}, \ldots, y_{n}}\left(\pi\left(y_{\text {new }} \mid \theta\right)\right) \approx \frac{1}{k} \sum_{j=1}^{k} \pi\left(y_{\text {new }} \mid \theta_{j}\right) .
$$

Finding a sample from the posterior

- So far, we have mostly used conjugacy to be able to find and simulate from the posterior.
- Alternative, we have used numerical computations of integrals.
- What if you cannot use conjugacy, and your integral is too high-dimensional to compute well numerically?
- Markov Chain Monte Carlo (MCMC) comes to the rescue!
- Idea of MCMC:
- Start with a function $f(\theta)$ that is proportinal to the posterior, e.g., $f(\theta)=\pi($ data $\mid \theta) \pi(\theta)$.
- Define an ergodic Markov chain so that its limiting distribution is the distribution with density or probability mass function proportional to f.
- Use the values of the Markov chain as an approximate sample in a computation like above.
- It turns out that, in the limit as the length of the chain increases towards ∞, the approximation goes to the expected value above.

Continuous variable Markov chains

- A discrete time continuous state space Markov chain is a sequence

$$
X_{0}, X_{1}, \ldots
$$

of continuous random variables with the property that, for all $n>0$,

$$
\pi\left(X_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right)=\pi\left(X_{n+1} \mid X_{n}\right)
$$

- We work with time-homogeneous Markov chains, so that the density $\pi\left(X_{n+1} \mid X_{n}\right)$ is the same for all n.
- Ergodicity is defined in a similar way as for discrete state space chains: The chain needs to be irreducible, aperiodic, and positive recurrent.
- The fundamental limit theorem for ergodic Markov chains holds: In the limit as $n \rightarrow \infty$, the chain approaches a unique positive stationary distribution.

The Metropolis-Hastings algorithm

Given a function $f(\theta)$, how can we define an ergodic Markov chain with limiting distribution with density (or pmf) proportional to $f(\theta)$?

- Define a proposal distribution $q\left(\theta^{*} \mid \theta\right)$ so that, for any given θ, it is possible to simulate a θ^{*}.
- Run the Metropolis-Hastings algorithm:
- Choose or simulate some (reasonable) $\theta^{(0)}$.
- For $i=0,1,2 \ldots$:
- Simulate a proposal θ^{*} using $q\left(\theta^{*} \mid \theta^{(i)}\right)$.
- Compute the acceptance probability

$$
\rho=\min \left(1, \frac{f\left(\theta^{*}\right) q\left(\theta^{(i)} \mid \theta^{*}\right)}{f\left(\theta^{(i)}\right) q\left(\theta^{*} \mid \theta^{(i)}\right)}\right) .
$$

- With probability ρ, set $\theta^{(i+1)}=\theta^{*}$, otherwise set $\theta^{(i+1)}=\theta^{(i)}$.
- The MH algorithm defines a Markov chain $\theta^{(0)}, \theta^{(1)}, \theta^{(2)}, \ldots$
- IF this Markov chain is ergodic, its limiting distribution will have density proportional to $f(\theta)$.

Toy example

- Old example from compendium Chapter 1:

$$
\begin{aligned}
y \mid p & \sim \operatorname{Binomial}(17, p) \\
p & \sim \operatorname{Beta}(2.3,4.1) \\
y_{\text {new }} \mid p & \sim \operatorname{Binomial}(3, p)
\end{aligned}
$$

- We would like to compute $\operatorname{Pr}\left(y_{\text {new }}=1 \mid y=4\right)$.
- In this toy example we can do so
- directly, using conjugacy
- using discretization
- using numerical integration
- As an illustration (see R) we may also use MCMC.

Second example

- We have observed the data $\left(x_{i}, y_{i}\right)$:

$$
(2,0.32),(3,0.57),(4,0.61),(6,0.83),(9,0.91)
$$

- The context gives us the following model
- We expect the data to follow $y=f\left(x, \theta_{1}\right)=\frac{\exp \left(\theta_{1} x\right)-1}{\exp \left(\theta_{1} x\right)+1}$ where θ_{1} is an unknown positive parameter.
- We have observed the data with added noise $\operatorname{Normal}\left(0, \theta_{2}^{2}\right)$ where θ_{2} is an unknown positive parameter.
- We assume a flat prior on $\theta_{1}>0$ and $\theta_{2}>0$.
- We get the posterior

$$
\pi(\theta \mid \text { data }) \propto_{\theta} \prod_{i=1}^{5} \operatorname{Normal}\left(y_{i} ; f\left(x_{i}, \theta_{1}\right), \theta_{2}^{2}\right)
$$

- Use MCMC to simulate from the value of y when $x=10$ (see R).

