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nce for Branching processes

» Say you have observed some data, and you want to find a branching
process (of the type discussed in Dobrow) that appropriately models
the data, to then make predictions. How?

» A branching process is characterized by the probability vector
a=(ap, a1, a,...,) where a; is the probabilty for i offspring in the
offspring process.

> Let y1,¥s,...,Yn be the counts of offspring in n observations of the
offspring process. If a is given we have the likelihood

n
7T(y1,-~-,}/n | a) = Hay,-
i=1

» To complete the model, we need a prior on a.

» As a has infinite length and we have a finite number of observations,
we need to put information from the context into the prior, to get a
sensible posterior.

» Some alternatives:

» You assume the offspring distribution has a particular parametric
form, and you learn about the parameters.

» You assume that a; = 0 for i > m for some m.
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Example: Using a Binomial likelihood

» Assume the offspring process is Binomial(N, p) for some parameter
p and a fixed known N. We get the likelihood

(1, ¥n | p) = | | Binomial(y; N, p).
i=1
> A possibility is to use a prior p ~ Beta(a, ). Writing S="7_, yi
we get the posterior
p | data ~ Beta(a + S, 8+ nN — S).

» More generally, if m(p) = f(p) for any positive function integrating
to 1 on [0, 1], we get the posterior

m(p | data) o<, Beta(p; 14+ S, 1+ nN — S)f(p)

» We can then for example compute numerically the posterior
probability that the branching process is supercritical, i.e., that
Pr(p > 1/N | data), with (see R computations)

1
/1 r(p | data) dp = f1//v Beta(1+ S,1+ nN — S)f(p) dp
1/N fol Beta(1+ S,1+ nN — S)f(p) dp
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Example: Using a Multinomial likelihood

» Assume there is a maximum of N offspring and that now
p = (po, P1,---,pn) is an unknown probability vector so that p; is
the probability of i offspring. We get the likelihood

7(¥1,...,¥n | P) xp Multinomial(c; p)

where ¢ = (¢, ..., cn) is the vector of counts in the data of cases
with 0, ..., N offspring, respectively.
> If we use the prior p ~ Dirichlet(a) where oo = (v, ..., ap) is a

vector of pseudocounts, we get the posterios
p | data ~ Dirichlet(« + ¢).

with expectation

E(p; | data) = Nafi
Zj:o(aj +¢)
> Note that Dirichlet(1,...,1) corresponds to the uniform distribution.

» We can simulate from the posterior to investigate for example the
probability of being supercritical.
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Part 2: Using MCMC for Bayesian inference

We have some data yi,..., Yy, and we want to make a probability
prediction for y,ew .

> We (often) define a parameter #, and a probabilistic model so that
Y1, -+ Yns Ynew are all conditionally independent given 6:

7T(Y17~~7}/n7}/new, lHWyI |0] yﬂEW|9)7T(0)
» Then

T(Ynew | Y1,---5¥n) = /OW()/,EW | )7 (0] y1,...,¥n)dO
= E9|)’1 ----- Yn (W(Ynew ‘ 9))

» Upshot (using "law of large numbers"): We can make predictions by
» Simulating 61, ..., 6 from the posterior (6 | y1,...,¥n).
> Averaging

k
1
Ee\yl ,,,,, Yn (W(ynew | 9 ; Z T\ Ynew | 9
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Finding a sample from the posterior

» So far, we have mostly used conjugacy to be able to find and
simulate from the posterior.

» Alternative, we have used numerical computations of integrals.

» What if you cannot use conjugacy, and your integral is too
high-dimensional to compute well numerically?

» Markov Chain Monte Carlo (MCMC) comes to the rescue!

» Idea of MCMC:

> Start with a function 7(0) that is proportinal to the posterior, e.g.,
f(6) = w(data | 6)m(6).

» Define an ergodic Markov chain so that its limiting distribution is
the distribution with density or probability mass function proportional
to f.

> Use the values of the Markov chain as an approximate sample in a
computation like above.

P |t turns out that, in the limit as the length of the chain increases
towards oo, the approximation goes to the expected value above.
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Continuous variable Markov chains

» A discrete time continuous state space Markov chain is a sequence
Xo, X1, . ..
of continuous random variables with the property that, for all n > 0,
T(Xot1 | Xo, X1, oo, Xn) = 7(Xng1 | Xa)

» We work with time-homogeneous Markov chains, so that the density
m(Xny1 | Xn) is the same for all n.

» Ergodicity is defined in a similar way as for discrete state space
chains: The chain needs to be irreducible, aperiodic, and positive
recurrent.

» The fundamental limit theorem for ergodic Markov chains holds: In
the limit as n — oo, the chain approaches a unique positive
stationary distribution.
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The Metropolis-Hastings algorithm

Given a function f(6), how can we define an ergodic Markov chain with
limiting distribution with density (or pmf) proportional to f(6)?
» Define a proposal distribution q(6* | 8) so that, for any given 6, it is
possible to simulate a 6*.
» Run the Metropolis-Hastings algorithm:

> Choose or simulate some (reasonable) 8.
» Fori=0,1,2...:
» Simulate a proposal 0* using q(6* | Q(i)).
» Compute the acceptance probability

. F(0%)q(o" | 6%)
= 1, ————- | .
o ( TF(6D)a(6" | 60)
> With probability p, set 011 = §* otherwise set #U+1) = g(1)
» The MH algorithm defines a Markov chain 8(® 91 9 .

» |F this Markov chain is ergodic, its limiting distribution will have
density proportional to f(6).
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Toy example

» Old example from compendium Chapter 1:

y|p ~ Binomial(17,p)
p ~ Beta(2.3,4.1)
Ynew | P~ Binomial(3, p)

» We would like to compute Pr(ypew = 11|y = 4).
» In this toy example we can do so

> directly, using conjugacy

» using discretization

> using numerical integration

» As an illustration (see R) we may also use MCMC.
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Second example

» \We have observed the data (x;, y;):

(2,0.32),(3,0.57), (4,0.61), (6,0.83), (9,0.91)

» The context gives us the following model

> We expect the data to follow y = f(x,6:) = % where 6; is an
unknown positive parameter.

> We have observed the data with added noise Normal(0, 63) where 6,
is an unknown positive parameter.
» We assume a flat prior on 6; > 0 and 6> > 0.

» We get the posterior

5
(0 | data) o H Normal(y;; f(xi, 61),63).

i=1

» Use MCMC to simulate from the value of y when x = 10 (see R).
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