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Is an approximate sample good enough?

▶ Strong law of large numbers for samples: If Y1,Y2, . . . ,Ym and Y
are i.i.d. random variables from a distribution with finite mean, and
if E[r(Y )] exists, then, with probability 1,

lim
m→∞

r(Y1) + r(Y2) + · · ·+ r(Ym)

m
= E[r(Y )]

▶ Strong law of large numbers for Markov chains: If X0,X1, . . . , is an
ergodic Markov chain with stationary distribution π, and if E[r(X )]
exists, then, with probability 1,

lim
m→∞

r(X1) + r(X2) + · · ·+ r(Xm)

m
= E[r(X )]

where X has the stationary distribution π.

▶ NOTE: When using this theorem in practice, one might improve
accuracy by throwing away the first sequence X1, . . . ,Xs for s < m
before computing the average. The first sequence is then called the
burn-in.
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Toy example

▶ Consider the Markov chain X0,X1, . . . with states {0, 1, 2} and with

P =

0.99 0.01 0
0 0.9 0.1
0.2 0 0.8

 .

Using theory from Chapter 3 we get that the limiting distribution is
v = (20/23, 2/23, 1/23).

▶ Consider the function r(x) = x5. If X is a random variable with the
limiting distribution,

E (r(X )) = 05 · 20
23

+ 15 · 2

23
+ 25 · 1

23
=

34

23
= 1.4783

▶ If Y1, . . . ,Yn are all i.i.d. variables with the limiting distribution, we
can check numerically (see R code) that

lim
n→∞

r(Y1) + · · ·+ r(Yn)

n
= 1.4783

▶ We also get (see R code), for X0,X1, . . . , that

lim
n→∞

r(X1) + · · ·+ r(Xn)

n
= 1.4783

but in this case the limit is approached more slowly.
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Less toy-ish example: “Good” sequences

Consider sequences of length m consisting of 0’s and 1’s.

▶ A sequence is called “good” if if contains no consecutive 1’s.

▶ What is the average number of 1’s in good sequences of length m?

▶ Brute force computation will not work even for m of moderate size.

▶ Theoretical computation is possible, but not obvious how to do.

▶ Efficient direct simulation of a sample of good sequences is not
obvious how to do.

▶ We construct a random walk on a weighted un-directed graph with
nodes consisting of all good sequences (fixed m) so that the limiting
distribution is uniform:
▶ Two good sequences are neighbours when they differ at exactly one

position. The weight of edge connecting them is 1.
▶ Each good sequence has an edge connecting it to itself, with weight

so that the total weights of edges going out from the sequence is m.
▶ Then the limiting distribution is the uniform distribution.
▶ Thus we can estimate the solution by counting 1’s in sequences

generated by the Markov chain, and then take the average.
▶ This is both easy to program and gives efficient and accurate results.
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The Metropolis Hastings algorithm

If we start with a particular distribution, can we construct a Markov
chain with that as the limiting distribution?

▶ Let θ be a random variable with probability mass function, or
density, π(θ).

▶ We also assume given a proposal distribution q(θnew | θ), which, for
every given θ, provides a pmf or density for a new θnew .

▶ Finally, define, for θ and θnew , the acceptance probability

a = min

(
1,

π(θnew )q(θ | θnew )
π(θ)q(θnew | θ)

)
▶ The Metropolis Hastings algorithm is: Starting with some initial

value θ0, generate θ1, θ2, . . . by, at each step, proposing a new θ
based on the old using the proposal function and accepting it with
probability a. If it is not accepted, the old value is used again.

▶ If this defines an ergodic Markov chain, its unique stationary
distribution is π(θ) (Proof below).
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The Metropolis Hastings algorithm, continued

NOTES:

▶ The pmf or density π(θ) only needs to be known up to a constant.

▶ If the proposal function is symmetric, i.e., q(θ | θnew ) = q(θnew | θ)
for all θ and θnew , then q disappears in the formula for the
acceptance probaility a.

▶ The computations for good sequences is an example, with π(θ)
uniform and q the random walk, so that q(θ | θnew ) = q(θnew | θ).

▶ Unless the distribution π(θ) is positive, remark 4 in Dobrow page
188 does NOT hold. If π(θ) is not positive, ergodicity of the
Metropolis Hastings Markov chain needs to be checked separately,
even if the proposal Markov chain is ergodic.
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Proof that MH algorithm works

▶ In fact, we will show that the Metropolis Hastings chain fulfills the
detailed balance condition relative to π(θ). Thus it is time reversible
and if it is ergodic it will have π(θ) as its limiting distribution.

▶ Let T (θi+1 | θi ) be the transition function for the MH Markov chain.
Assume θi+1 ̸= θi , and

π(θi+1)q(θi | θi+1)

π(θi )q(θi+1 | θi )
≤ 1

Then

π(θi )T (θi+1 | θi ) = π(θi )q(θi+1 | θi )
π(θi+1)q(θi | θi+1)

π(θi )q(θi+1 | θi )
= π(θi+1)q(θi | θi+1) = π(θi+1)T (θi | θi+1),

the last step because, with assumption above, π(θi )q(θi+1|θi )
π(θi+1)q(θi |θi+1)

≥ 1

▶ We get a similar computation when the opposite inequality holds.
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Example 1: Cryptography (from Dobrow)

▶ A simple way to encrypt a text is to apply to each character a fixed
permutation of the set of the 26 English characters plus space. The
text can be decrypted by applying the reverse permutation f , if it is
known. If T is an encrypted text we write f (T ) for T decrypted
with f .

▶ Given a short encrypted text T , can we find the permutation f ?
▶ Using a text database we first fit a Markov model for text by

counting transitions between consecutive characters.
▶ For any text T ′, we can then compute the probability S(T ′) for T ′

being observed as a sequence in this Markov model.
▶ We get a probability distribution on the set of all the permutations

above by defining, for any f ,

π(f ) ∝f S(f (T ))

▶ The density π(f ) is on a very large set, with very few of the f
having significant probability. Yet a M.H. can manage to find these
(or this) f .

▶ We use Metropolis Hastings with a proposal function that picks two
characters at random and adds to f a switch of these.
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Example 2: Darwin’s finches (from Dobrow)

▶ A co-occurrence matrix M has different species as rows and different
locations as columns. If a species occurs at a location, the matrix
contains 1, otherwise 0.

▶ A checkerboard is a submatrix

(
0 1
1 0

)
or

(
1 0
0 1

)
. Let C (M) count

the number of checkerboards in M .

▶ Darwin made a co-occurrence matrix for finches on the Galapagos
islands. Compared to the set Ω of possible co-occurrence matrices
with the same marginal sums, did it contain an unusually large
number of checkerboards?

▶ Use Metropolis Hastings to simulate from the uniform distribution
on Ω. Use a proposal function that uniformly randomly locates one
of the checkerboards and switches it to the opposite form.

▶ The acceptance probability becomes min(1,C (M)/C (M∗)) where
M∗ is proposed from M (error in Dobrow!)

▶ Simulation results show that the number of checkerboards observed
by Darwin (333) is indeed unexpectedly large, proving competition
between the finches.
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Gibbs sampling

▶ For any probability model over a vector θ = (θ1, θ2, . . . , θk), consider
a MH proposal function changing only one coordinate, with the
value of this coordinate simulated from the conditional distribution
given the remaining coordinates.

▶ Prove that the acceptance probability is 1.

▶ Putting together an algorithm updating different coordinates in
different steps may create an ergodic Markov chain.

▶ This is then called Gibbs sampling.

▶ Sometimes the conditional distributions are easy to derive. Then this
is an easy-to-use version of Metropolis Hastings.
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The Ising model

▶ Uses a grid of vertices; we will assume an n× n grid. Two vertices v
and w are neighbours, denoted v ∼ w , if they are next to each other
in the grid.

▶ Each vertex v can have value +1 or −1 (called its “spin”); we
denote this by σv = 1 or σv = −1.

▶ A configuration σ consists of a choice of +1 or -1 for each vertex:
Thus the set Ω of possible configurations has 2(n

2) elements.

▶ We define the energy of a configuration as E (σ) = −
∑

v∼w σvσw .

▶ The Gibbs distribution is the probability mass function on Ω defined
by

π(σ) ∝σ exp (−βE (σ))

where β is a parameter of the model; 1/β is called the temperature.

▶ It turns out that when the temperature is high, samples from the
model will show a chaotic pattern of spins, but when the
temperature sinks below the phase transition value, in our case
1/β = 2/ log(1 +

√
2), samples will show chunks of neighbouring

vertices with the same spin; the system will be “magnetized”.
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Simulating from the Ising model using Gibbs sampling

▶ For a vertex configuration σ and a vertex v let σ−v denote the part
of σ that does not involve v .

▶ Propose a new configuration σ∗ given an old configuration σ by first
choosing a vertex v , then, let σ∗ be identical to σ except possibly at
v : Decide the spin at v using the conditional distribution given σ−v :

π(σv = 1 | σ−v ) =
π(σv = 1, σ−v )

π(σ−v )
=

π(σv = 1, σ−v )

π(σv = 1, σ−v ) + π(σv = −1, σ−v )

=
1

1 +
π(σv=−1,σ−v )

π(σv=1,σ−v )

=
1

1 + exp (−βE(σv = −1, σ−v ) + βE(σv = 1, σ−v ))

=
1

1 + exp
(
β
∑

v∼w σvσw |σv=−1 −β
∑

v∼w σvσw |σv=1

)
=

1

1 + exp
(
−2β

∑
v∼w σw

) .
▶ This works. However, we will see next time an even better approach,

”perfect sampling”, to this simulation problem.
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