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Gibbs sampling

▶ For any probability model over a vector θ = (θ1, θ2, . . . , θk), consider
a MH proposal function changing only one coordinate, with the
value of this coordinate simulated from the conditional distribution
given the remaining coordinates.

▶ Prove that the acceptance probability is 1.

▶ Putting together an algorithm updating different coordinates in
different steps may create an ergodic Markov chain.

▶ This is then called Gibbs sampling.

▶ Sometimes the conditional distributions are easy to derive. Then this
is an easy-to-use version of Metropolis Hastings.

2 / 10



The Ising model

▶ Uses a grid of vertices; we will assume an n× n grid. Two vertices v
and w are neighbours, denoted v ∼ w , if they are next to each other
in the grid.

▶ Each vertex v can have value +1 or −1 (called its “spin”); we
denote this by σv = 1 or σv = −1.

▶ A configuration σ consists of a choice of +1 or -1 for each vertex:
Thus the set Ω of possible configurations has 2(n

2) elements.

▶ We define the energy of a configuration as E (σ) = −
∑

v∼w σvσw .

▶ The Gibbs distribution is the probability mass function on Ω defined
by

π(σ) ∝σ exp (−βE (σ))

where β is a parameter of the model; 1/β is called the temperature.

▶ It turns out that when the temperature is high, samples from the
model will show a chaotic pattern of spins, but when the
temperature sinks below the phase transition value, in our case
1/β = 2/ log(1 +

√
2), samples will show chunks of neighbouring

vertices with the same spin; the system will be “magnetized”.
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Simulating from the Ising model using Gibbs sampling

▶ For a vertex configuration σ and a vertex v let σ−v denote the part
of σ that does not involve v .

▶ Propose a new configuration σ∗ given an old configuration σ by first
choosing a vertex v , then, let σ∗ be identical to σ except possibly at
v : Decide the spin at v using the conditional distribution given σ−v :

π(σv = 1 | σ−v ) =
π(σv = 1, σ−v )

π(σ−v )
=

π(σv = 1, σ−v )

π(σv = 1, σ−v ) + π(σv = −1, σ−v )

=
1

1 +
π(σv=−1,σ−v )

π(σv=1,σ−v )

=
1

1 + exp (−βE(σv = −1, σ−v ) + βE(σv = 1, σ−v ))

=
1

1 + exp
(
β
∑

v∼w σvσw |σv=−1 −β
∑

v∼w σvσw |σv=1

)
=

1

1 + exp
(
−2β

∑
v∼w σw

) .
▶ This works. However, we will see below an even better approach,

”perfect sampling”, to the Ising model simulation problem.
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Reminder: The Metropolis Hastings algorithm

▶ Goal: Given f (θ) proportional to some probability (density) function
π(θ), simulate from a Markov chain whose limiting distribution is
π(θ), apply a function to the simulated values and average, to make
approximate inference.

▶ To simulate, we need a proposal distribution q(θnew | θ), which, for
every given θ, provides a probability (density) function for a θnew .

▶ At each Markov step, simulate a proposal, and accept it with
probability

a = min

(
1,

π(θnew )q(θ | θnew )
π(θ)q(θnew | θ)

)
or else repeat the old value.

▶ The main problem with MCMC: Difficult to know the connection
between the length of the sample and the accuracy of inference
results.
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Knowing convergence has been reached: Perfect sampling

Given ergodic Markov chain with finite sample space of size k and
limiting distribution π.

▶ Idea: Given n, prove that Xn actually has reached the limit
distribution.

▶ Method: Prove that the distribution at Xn is independent of the
starting value at X0.

▶ Try: Construct k Markov chains that are dependent (“coupled”) but
which are marginally Markov chains as above. If they start at the k
possible values at X0 but have identical values at Xn, we are done.

▶ Note: n cannot be determined as the first value where the k chains
meet; it must be determined independently of such information!

▶ Thus usually one wants to generate chains X−n,X−n+1, . . . ,X0

where X0 has the limiting distribution, and we stepwise increase n to
make all chains coalesce to one chain.
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Using same source of randomness for all k chains

Consider the chains X
(j)
−n, . . . ,X

(j)
0 for j = 1, . . . , k .

▶ Instead of simulating X
(j)
i+1 based on X

(j)
i independently for each j ,

we define a function g so that X
(j)
i+1 = g(X

(j)
i ,Ui ) for all j , where

Ui ∼ Uniform(0, 1).

▶ Thus if two chains have identical values in Xi , they will also be
identical at Xi+1.

▶ See Figure 5.10 in Dobrow.

▶ Thus, for a particular n, if all chains have not converged at X0, we
simulate k chains from X−2n to X−n: They might only hit a subset
of the k states at X−n and thus might coalesce to one state at X0,
using the old simulations. If not, double n again.
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Monotonicity

▶ Do we need to keep track of all k chains?

▶ We define a partial ordering on a set as a relation x ≤ y between
some pairs x and y in the set, such that:
▶ If x ≤ y and y ≤ x then x = y .
▶ If x ≤ y and y ≤ z then x ≤ z (in fact we don’t need this).

▶ We will need that our partial ordering has a minimal element (an m
such that m ≤ x for all x) and a maximal element (an M such that
x ≤ M for all x).

▶ If we have a partial ordering on the state space of the Markov chain,
and if x ≤ y implies g(x ,U) ≤ g(y ,U), then g is monotone.

▶ We can then prove that we only need to keep track of the chain
starting at m and the chain starting at M!
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Example: Perfect simulation from the Ising model

▶ Given an Ising model with β > 0.
▶ Define partial ordering on Ω (the set of all configurations) as follows

σ ≤ τ if σv ≤ τv for all vertices v

▶ We have a minimal and a maximal configuration (all -1’s and +1’s,
respectively).

▶ We can arrange for g , the updating of chains, to be monotone:
Assuming σ ≤ τ ,

Pr (σv = 1 | σ−v ) =
1

1 + exp(−2β
∑

v∼w σw )
≤

1

1 + exp(−2β
∑

v∼w τw )
= Pr (τv = 1 | τ−v ) .

▶ So perfect simulation from the Ising model proceeds as follows:
Start one chain m at all -1’s and one chain M at all +1’s. Cycle
through the vertices and compute the conditional probabilities pm
and pM of +1 at that vertex. We know that pm ≤ pM . Simulate
U ∼ Uniform(0, 1). If U < pm set σv = −1 for both chains, and if
U > pM set σv = +1 for both chains. Otherwise set σv = +1 for
the M chain and σv = −1 for the m chain. Determine coalescence
as above.
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From lecture 8: Second example

▶ We have observed the data (xi , yi ):

(2, 0.32), (3, 0.57), (4, 0.61), (6, 0.83), (9, 0.91)

▶ The context gives us the following model
▶ We expect the data to follow y = f (x , θ1) =

exp(θ1x)−1
exp(θ1x)+1

where θ1 is an
unknown positive parameter.

▶ We have observed the data with added noise Normal(0, θ22) where θ2
is an unknown positive parameter.

▶ We assume a flat prior on θ1 > 0 and θ2 > 0.

▶ We get the posterior

π(θ | data) ∝θ

5∏
i=1

Normal(yi ; f (xi , θ1), θ
2
2).

▶ Use MCMC to simulate from the value of y when x = 10 (see R).
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