MVE550 2023 Lecture 10 Perfect sampling More on MCMC (review)

Petter Mostad

Chalmers University

November 24, 2023

- For any probability model over a vector θ = (θ₁, θ₂,..., θ_k), consider a MH proposal function changing only one coordinate, with the value of this coordinate simulated from the conditional distribution given the remaining coordinates.
- Prove that the acceptance probability is 1.
- Putting together an algorithm updating different coordinates in different steps may create an ergodic Markov chain.
- This is then called Gibbs sampling.
- Sometimes the conditional distributions are easy to derive. Then this is an easy-to-use version of Metropolis Hastings.

The Ising model

- Uses a grid of vertices; we will assume an n × n grid. Two vertices v and w are *neighbours*, denoted v ~ w, if they are next to each other in the grid.
- ► Each vertex v can have value +1 or -1 (called its "spin"); we denote this by σ_v = 1 or σ_v = -1.
- A configuration σ consists of a choice of +1 or -1 for each vertex: Thus the set Ω of possible configurations has 2^(n²) elements.
- We define the *energy* of a configuration as $E(\sigma) = -\sum_{v \sim w} \sigma_v \sigma_w$.
- The Gibbs distribution is the probability mass function on Ω defined by

$$\pi(\sigma) \propto_{\sigma} \exp\left(-\beta E(\sigma)\right)$$

where β is a parameter of the model; $1/\beta$ is called the *temperature*.

It turns out that when the temperature is high, samples from the model will show a chaotic pattern of spins, but when the temperature sinks below the *phase transition* value, in our case 1/β = 2/log(1 + √2), samples will show chunks of neighbouring vertices with the same spin; the system will be "magnetized".

Simulating from the Ising model using Gibbs sampling

- For a vertex configuration σ and a vertex v let σ_{-v} denote the part of σ that does not involve v.
- Propose a new configuration σ* given an old configuration σ by first choosing a vertex v, then, let σ* be identical to σ except possibly at v: Decide the spin at v using the conditional distribution given σ_{-v}:

$$\begin{aligned} \pi(\sigma_{\nu} = 1 \mid \sigma_{-\nu}) &= \frac{\pi(\sigma_{\nu} = 1, \sigma_{-\nu})}{\pi(\sigma_{-\nu})} = \frac{\pi(\sigma_{\nu} = 1, \sigma_{-\nu})}{\pi(\sigma_{\nu} = 1, \sigma_{-\nu}) + \pi(\sigma_{\nu} = -1, \sigma_{-\nu})} \\ &= \frac{1}{1 + \frac{\pi(\sigma_{\nu} = -1, \sigma_{-\nu})}{\pi(\sigma_{\nu} = 1, \sigma_{-\nu})}} = \frac{1}{1 + \exp(-\beta E(\sigma_{\nu} = -1, \sigma_{-\nu}) + \beta E(\sigma_{\nu} = 1, \sigma_{-\nu}))} \\ &= \frac{1}{1 + \exp(\beta \sum_{\nu \sim w} \sigma_{\nu} \sigma_{w} \mid \sigma_{\nu} = -1 - \beta \sum_{\nu \sim w} \sigma_{\nu} \sigma_{w} \mid \sigma_{\nu} = 1)} \\ &= \frac{1}{1 + \exp(-2\beta \sum_{\nu \sim w} \sigma_{w})}. \end{aligned}$$

This works. However, we will see below an even better approach, "perfect sampling", to the Ising model simulation problem.

Reminder: The Metropolis Hastings algorithm

- Goal: Given $f(\theta)$ proportional to some probability (density) function $\pi(\theta)$, simulate from a Markov chain whose limiting distribution is $\pi(\theta)$, apply a function to the simulated values and average, to make approximate inference.
- ► To simulate, we need a *proposal distribution* $q(\theta_{new} | \theta)$, which, for every given θ , provides a probability (density) function for a θ_{new} .
- At each Markov step, simulate a proposal, and accept it with probability

$$a = \min\left(1, rac{\pi(heta_{\mathit{new}})q(heta \mid heta_{\mathit{new}})}{\pi(heta)q(heta_{\mathit{new}} \mid heta)}
ight)$$

or else repeat the old value.

The main problem with MCMC: Difficult to know the connection between the length of the sample and the accuracy of inference results. Given ergodic Markov chain with finite sample space of size k and limiting distribution π .

- Idea: Given n, prove that X_n actually has reached the limit distribution.
- Method: Prove that the distribution at X_n is independent of the starting value at X₀.
- Try: Construct k Markov chains that are dependent ("coupled") but which are marginally Markov chains as above. If they start at the k possible values at X₀ but have identical values at X_n, we are done.
- Note: n cannot be determined as the first value where the k chains meet; it must be determined independently of such information!
- Thus usually one wants to generate chains X_{-n}, X_{-n+1},..., X₀ where X₀ has the limiting distribution, and we stepwise increase n to make all chains *coalesce* to one chain.

Consider the chains $X_{-n}^{(j)}, \ldots, X_0^{(j)}$ for $j = 1, \ldots, k$.

- ▶ Instead of simulating $X_{i+1}^{(j)}$ based on $X_i^{(j)}$ independently for each j, we define a function g so that $X_{i+1}^{(j)} = g(X_i^{(j)}, U_i)$ for all j, where $U_i \sim \text{Uniform}(0, 1)$.
- Thus if two chains have identical values in X_i, they will also be identical at X_{i+1}.
- See Figure 5.10 in Dobrow.
- ► Thus, for a particular n, if all chains have not converged at X₀, we simulate k chains from X_{-2n} to X_{-n}: They might only hit a subset of the k states at X_{-n} and thus might coalesce to one state at X₀, using the old simulations. If not, double n again.

- Do we need to keep track of all k chains?
- ▶ We define a *partial ordering* on a set as a relation x ≤ y between some pairs x and y in the set, such that:
 - If $x \leq y$ and $y \leq x$ then x = y.
 - If $x \le y$ and $y \le z$ then $x \le z$ (in fact we don't need this).
- We will need that our partial ordering has a minimal element (an m such that m ≤ x for all x) and a maximal element (an M such that x ≤ M for all x).
- If we have a partial ordering on the state space of the Markov chain, and if x ≤ y implies g(x, U) ≤ g(y, U), then g is monotone.
- We can then prove that we only need to keep track of the chain starting at m and the chain starting at M!

Example: Perfect simulation from the Ising model

• Given an Ising model with $\beta > 0$.

• Define partial ordering on Ω (the set of all configurations) as follows

 $\sigma \leq \tau$ if $\sigma_v \leq \tau_v$ for all vertices v

- We have a minimal and a maximal configuration (all -1's and +1's, respectively).
- We can arrange for g, the updating of chains, to be monotone: Assuming $\sigma \leq \tau$,

$$\Pr\left(\sigma_{\nu}=1\mid\sigma_{-\nu}\right)=\frac{1}{1+\exp(-2\beta\sum_{\nu\sim w}\sigma_{w})}\leq\frac{1}{1+\exp(-2\beta\sum_{\nu\sim w}\tau_{w})}=\Pr\left(\tau_{\nu}=1\mid\tau_{-\nu}\right).$$

► So perfect simulation from the Ising model proceeds as follows: Start one chain *m* at all -1's and one chain *M* at all +1's. Cycle through the vertices and compute the conditional probabilities p_m and p_M of +1 at that vertex. We know that $p_m \leq p_M$. Simulate $U \sim \text{Uniform}(0,1)$. If $U < p_m$ set $\sigma_v = -1$ for both chains, and if $U > p_M$ set $\sigma_v = +1$ for both chains. Otherwise set $\sigma_v = +1$ for the *M* chain and $\sigma_v = -1$ for the *m* chain. Determine coalescence as above. • We have observed the data (x_i, y_i) :

(2, 0.32), (3, 0.57), (4, 0.61), (6, 0.83), (9, 0.91)

- The context gives us the following model
 - We expect the data to follow y = f(x, θ₁) = exp(θ₁x)-1/exp(θ₁x)+1 where θ₁ is an unknown positive parameter.
 - We have observed the data with added noise Normal(0, θ²₂) where θ₂ is an unknown positive parameter.
 - We assume a flat prior on $\theta_1 > 0$ and $\theta_2 > 0$.
- We get the posterior

$$\pi(\theta \mid \mathsf{data}) \propto_{\theta} \prod_{i=1}^{5} \mathsf{Normal}(y_i; f(x_i, \theta_1), \theta_2^2).$$

• Use MCMC to simulate from the value of y when x = 10 (see R).