MVE550 2023 Lecture 10 Perfect sampling
 More on MCMC (review)

Petter Mostad
Chalmers University

November 24, 2023

Gibbs sampling

- For any probability model over a vector $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$, consider a MH proposal function changing only one coordinate, with the value of this coordinate simulated from the conditional distribution given the remaining coordinates.
- Prove that the acceptance probability is 1.
- Putting together an algorithm updating different coordinates in different steps may create an ergodic Markov chain.
- This is then called Gibbs sampling.
- Sometimes the conditional distributions are easy to derive. Then this is an easy-to-use version of Metropolis Hastings.

The Ising model

- Uses a grid of vertices; we will assume an $n \times n$ grid. Two vertices v and w are neighbours, denoted $v \sim w$, if they are next to each other in the grid.
- Each vertex v can have value +1 or -1 (called its "spin"); we denote this by $\sigma_{v}=1$ or $\sigma_{v}=-1$.
- A configuration σ consists of a choice of +1 or -1 for each vertex: Thus the set Ω of possible configurations has $2^{\left(n^{2}\right)}$ elements.
- We define the energy of a configuration as $E(\sigma)=-\sum_{v \sim w} \sigma_{v} \sigma_{w}$.
- The Gibbs distribution is the probability mass function on Ω defined by

$$
\pi(\sigma) \propto_{\sigma} \exp (-\beta E(\sigma))
$$

where β is a parameter of the model; $1 / \beta$ is called the temperature.

- It turns out that when the temperature is high, samples from the model will show a chaotic pattern of spins, but when the temperature sinks below the phase transition value, in our case $1 / \beta=2 / \log (1+\sqrt{2})$, samples will show chunks of neighbouring vertices with the same spin; the system will be "magnetized".

Simulating from the Ising model using Gibbs sampling

- For a vertex configuration σ and a vertex v let σ_{-v} denote the part of σ that does not involve v.
- Propose a new configuration σ^{*} given an old configuration σ by first choosing a vertex v, then, let σ^{*} be identical to σ except possibly at v : Decide the spin at v using the conditional distribution given σ_{-v} :

$$
\begin{aligned}
& \pi\left(\sigma_{v}=1 \mid \sigma_{-v}\right)=\frac{\pi\left(\sigma_{v}=1, \sigma_{-v}\right)}{\pi\left(\sigma_{-v}\right)}=\frac{\pi\left(\sigma_{v}=1, \sigma_{-v}\right)}{\pi\left(\sigma_{v}=1, \sigma_{-v}\right)+\pi\left(\sigma_{v}=-1, \sigma_{-v}\right)} \\
= & \frac{1}{1+\frac{\pi\left(\sigma_{v}=-1, \sigma_{-v}\right)}{\pi\left(\sigma_{v}=1, \sigma_{-v}\right)}}=\frac{1}{1+\exp \left(-\beta E\left(\sigma_{v}=-1, \sigma_{-v}\right)+\beta E\left(\sigma_{v}=1, \sigma_{-v}\right)\right)} \\
= & \frac{1}{1+\exp \left(\left.\beta \sum_{v \sim w} \sigma_{v} \sigma_{w}\right|_{\sigma_{v}=-1}-\left.\beta \sum_{v \sim w} \sigma_{v} \sigma_{w}\right|_{\sigma_{v}=1}\right)} \\
= & \frac{1}{1+\exp \left(-2 \beta \sum_{v \sim w} \sigma_{w}\right)} .
\end{aligned}
$$

- This works. However, we will see below an even better approach, "perfect sampling", to the Ising model simulation problem.

Reminder: The Metropolis Hastings algorithm

- Goal: Given $f(\theta)$ proportional to some probability (density) function $\pi(\theta)$, simulate from a Markov chain whose limiting distribution is $\pi(\theta)$, apply a function to the simulated values and average, to make approximate inference.
- To simulate, we need a proposal distribution $q\left(\theta_{\text {new }} \mid \theta\right)$, which, for every given θ, provides a probability (density) function for a $\theta_{\text {new }}$.
- At each Markov step, simulate a proposal, and accept it with probability

$$
a=\min \left(1, \frac{\pi\left(\theta_{\text {new }}\right) q\left(\theta \mid \theta_{\text {new }}\right)}{\pi(\theta) q\left(\theta_{\text {new }} \mid \theta\right)}\right)
$$

or else repeat the old value.

- The main problem with MCMC: Difficult to know the connection between the length of the sample and the accuracy of inference results.

Knowing convergence has been reached: Perfect sampling

Given ergodic Markov chain with finite sample space of size k and limiting distribution π.

- Idea: Given n, prove that X_{n} actually has reached the limit distribution.
- Method: Prove that the distribution at X_{n} is independent of the starting value at X_{0}.
- Try: Construct k Markov chains that are dependent ("coupled") but which are marginally Markov chains as above. If they start at the k possible values at X_{0} but have identical values at X_{n}, we are done.
- Note: n cannot be determined as the first value where the k chains meet; it must be determined independently of such information!
- Thus usually one wants to generate chains $X_{-n}, X_{-n+1}, \ldots, X_{0}$ where X_{0} has the limiting distribution, and we stepwise increase n to make all chains coalesce to one chain.

Using same source of randomness for all k chains

Consider the chains $X_{-n}^{(j)}, \ldots, X_{0}^{(j)}$ for $j=1, \ldots, k$.

- Instead of simulating $X_{i+1}^{(j)}$ based on $X_{i}^{(j)}$ independently for each j, we define a function g so that $X_{i+1}^{(j)}=g\left(X_{i}^{(j)}, U_{i}\right)$ for all j, where $U_{i} \sim \operatorname{Uniform}(0,1)$.
- Thus if two chains have identical values in X_{i}, they will also be identical at X_{i+1}.
- See Figure 5.10 in Dobrow.
- Thus, for a particular n, if all chains have not converged at X_{0}, we simulate k chains from $X_{-2 n}$ to X_{-n} : They might only hit a subset of the k states at X_{-n} and thus might coalesce to one state at X_{0}, using the old simulations. If not, double n again.

Monotonicity

- Do we need to keep track of all k chains?
- We define a partial ordering on a set as a relation $x \leq y$ between some pairs x and y in the set, such that:
- If $x \leq y$ and $y \leq x$ then $x=y$.
- If $x \leq y$ and $y \leq z$ then $x \leq z$ (in fact we don't need this).
- We will need that our partial ordering has a minimal element (an m such that $m \leq x$ for all x) and a maximal element (an M such that $x \leq M$ for all x).
- If we have a partial ordering on the state space of the Markov chain, and if $x \leq y$ implies $g(x, U) \leq g(y, U)$, then g is monotone.
- We can then prove that we only need to keep track of the chain starting at m and the chain starting at M !

Example: Perfect simulation from the Ising model

- Given an Ising model with $\beta>0$.
- Define partial ordering on Ω (the set of all configurations) as follows

$$
\sigma \leq \tau \text { if } \sigma_{v} \leq \tau_{v} \text { for all vertices } v
$$

- We have a minimal and a maximal configuration (all -1 's and +1 's, respectively).
- We can arrange for g, the updating of chains, to be monotone: Assuming $\sigma \leq \tau$,

$$
\operatorname{Pr}\left(\sigma_{v}=1 \mid \sigma_{-v}\right)=\frac{1}{1+\exp \left(-2 \beta \sum_{v \sim w} \sigma_{w}\right)} \leq \frac{1}{1+\exp \left(-2 \beta \sum_{v \sim w} \tau_{w}\right)}=\operatorname{Pr}\left(\tau_{v}=1 \mid \tau_{-v}\right)
$$

- So perfect simulation from the Ising model proceeds as follows: Start one chain m at all -1 's and one chain M at all +1 's. Cycle through the vertices and compute the conditional probabilities p_{m} and p_{M} of +1 at that vertex. We know that $p_{m} \leq p_{M}$. Simulate $U \sim \operatorname{Uniform}(0,1)$. If $U<p_{m}$ set $\sigma_{v}=-1$ for both chains, and if $U>p_{M}$ set $\sigma_{v}=+1$ for both chains. Otherwise set $\sigma_{v}=+1$ for the M chain and $\sigma_{v}=-1$ for the m chain. Determine coalescence as above.

From lecture 8: Second example

- We have observed the data $\left(x_{i}, y_{i}\right)$:

$$
(2,0.32),(3,0.57),(4,0.61),(6,0.83),(9,0.91)
$$

- The context gives us the following model
- We expect the data to follow $y=f\left(x, \theta_{1}\right)=\frac{\exp \left(\theta_{1} x\right)-1}{\exp \left(\theta_{1} x\right)+1}$ where θ_{1} is an unknown positive parameter.
- We have observed the data with added noise $\operatorname{Normal}\left(0, \theta_{2}^{2}\right)$ where θ_{2} is an unknown positive parameter.
- We assume a flat prior on $\theta_{1}>0$ and $\theta_{2}>0$.
- We get the posterior

$$
\pi(\theta \mid \text { data }) \propto_{\theta} \prod_{i=1}^{5} \operatorname{Normal}\left(y_{i} ; f\left(x_{i}, \theta_{1}\right), \theta_{2}^{2}\right)
$$

- Use MCMC to simulate from the value of y when $x=10$ (see R).

