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» In the beginning of the course, we defined a stochastic process as a
collection {X;,t € I} of random variables with a common state
space S.

» So far, the set | has been the non-negative integers. We now move
on to processes where [ is a non-countable set, for example all
positive real numbers, or all subsets of R2.

» Chapters 6 and 7 of Dobrow concern such stochastic processes
where the state space S is discrete.

» In Chapter 8 of Dobrow we look at the situation when the random
variables X; are continuous variables.
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Poisson distributions and Poisson processes

» A random variable with values 0,1,2,... with a Poisson distribution
can be used to model the count of events happening independently,
within some time interval.

» We have seen that if X ~ Poisson(A) then 7(x) = i—je”‘ and
E(X) = A, Var(X) = A

» A Poisson process models not only the count for a specific time
interval, but also the exact time of every event.
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Counting processes

» A counting process {N;,t € I} is a stochastic process where
| = R, where the state space is the non-negative integers, and
where 0 < s < t implies Ny < N;.

» Informally, when s < t, N — Ns counts the number of “events” in
(s, t].

» A realization of N; is a function of t that is a right-continuous step
function.
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Poisson process: Definition 1

» A Poisson process {N;}:>o with parameter A > 0 is a counting
process fulfilling

> Np =0.

» N; ~ Poisson(At) for all t > 0.

» Stationary increments: Niis — Ns has the same distribution as N; for
alls >0, t>0.

» Independent increments: Ny — Ns and N, — N, are independent,
when 0 < g<r<s<t.

» Note: Not obvious that such a process exists.

> Note: E(N;) = At. Thus what one is counting occurs with a rate of
A\ items per time unit.
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Review: The exponential distribution

A random variable X with non-negative values as possible values has an
exponential distribution with parameter X\ if the density is

m(x) = e M.
The cumulative probability distribution is
F(x)=1—e ™.

The expectation is +. The variance is 5.
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Memorylessness of the exponential distribution

» A random variable X is called memoryless if
PX>s+t]|X>s)=P(X>t)

foralls >0, t > 0.

» The exponential distribution is memoryless, and is the only
memoryless continuous random variable.

» Consider the consequences of this when using the exponential as a
model!
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Poisson process: Definition 2

» Definition 2: Let X1, X5,..., be a sequence of iid exponential
random variables with parmeter A\. Define Ny = 0 and, for t > O,

Ny =max{n: Xy +---+ X, < t}.

Then {N;}:+>0 is a Poisson process with parameter A.

> If we start with a Poisson process (def. 1) and let Xj, X5,... be
inter-arrival times, then they are independent exponentially
distributed and N; is given as above.

» Conversely, if we construct N; as above, all properties of definition 1
are easily proved except that N; ~ Poisson(\t): We discuss this
below.

» The definition provides an easy way to simulate a Poisson process.
» We call S, = X; + -+ + X, the arrival times of the process.
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Minimum and sum of independent exponentially

distributed variables

» Define M = min(Xi,..., X,) where, independently for each i,
X; ~ Exponential()\;). Then:
> M ~ Exponential(A1 + -+ + Ap).
> P(M=Xd) = 5t
» We will prove in an exercise: Let S, = X1 + --- + X, where,
independently for each i, X; ~ Exponential(A). Then
S, ~ Gamma(n, A).
» Using the distribution of S,,, one can complete the proof that a
process defined with “Definition 2" is a Poisson process:

-\t k
Pr(Ne=k)=Pr (S < t,Sk+ Xyy1>t)=---= #'
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Poisson process: Definition 3

00 02 04 06 08 1.0

» Plot shows, for each t, the probabilities of observing 0, 1 ...events:
Derivatives of all curves at 0 are 0 except for the first curve.

» Third definition: A Poisson process {N;}+>o with parameter A is a
couting process fulfilling

> N =0.

» The process has stationary and independent increments.

| 4
P(N,=0) = 1-—Xh+o(h)
P(Ny=1) = MXh+o(h)
P(Ny,>1) = o(h)

» All the three definitions of a Poission process are equivalent.
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At a hospital, births occur at a rate A. For each birth there is a
probability p = 0.52 that the child is a boy. The situation can be
modelled in two ways:

» The counts ¢; of boys and ¢, of girls are modelled with two
independent Poisson processes, <Nt(1)) and (Nt(2)) , with
>0 >0
parameters Ap and A(1 — p), respectively.

» The total number of births N is modelled with one Poisson process
(Nt);>o and counts are then Binomially distributed given N:

¢ ~ Binomial(N; p) o=N-q

» Luckily, we can prove that these ways of modelling are equivalent.
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Superposition and thinning

» LEMMA!: Let (N§”)t>0 ey (N,@) be independent Poisson

£>0
processes with parameters \py, ..., Apy, respectively, where

p=(p1,...,pn) is a probability vector. If ¢ = (cy,...,c,) are the
counts after time t (so that ¢; = Nt(')), an equivalent model is

¢ ~ Multinomial(N, p)

where (N),- is a Poisson process with parameter .
» Proof on next page.

» Starting with one Poisson process and creating another by
independently selecting arrivals with probability p and considering
only those is called thinning.

» Starting with several independent Poisson processes and considering
their joint counts is called superposition.

LA somewhat different treatment compared to Dobrow
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» Using the model with independent Poisson processes, the probability
of observing the count vector ¢ after time t is (writing
N=c+-+c)

HPO|sson i Apit) He—Ap, )\P,
i=1

AN TT P ()Y N! ¢ c
- e )\t — = . 1., ., n
(A) e NU gttt Pn

= Poisson(N; At) - Multinomial (¢; N, p)

» The process for N inherits independent and stationary increments
from the sub-processes, so it follows it is also a Poisson process.
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Uniformly distributed arrivals

> LEMMA?Z: Let (N¢)e>o be a Poisson process with parameter A. If we
fix that Ny = k and we select uniformly randomly one of these k
arrivals, then its arrival time is uniformly distributed on the interval
[0, t].

» Proof on next page.

» Consequence: We can simulate a Poisson process on [0, t] by first
simulating N;, and then simulating the N, arrival times as
independently uniformly distributed on the interval [0, t].

» Consequence: When N; = k is fixed, the n'th arrival time has the
same distribution as the n'th value among k independent uniformly
distributed variables on [0, t].

2A somewhat different treatment compared to Dobrow
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Pr(Sk > s | k uniformly random in {1,...,n}, Ny = n)
n k—1

= fZPr (Sk >s|N;=n)= ZZPr Ns=j| Ny =n)
= g
n k-1
_ 7ZZPr(N =j)Pr(Ni—s =n—))
Pr(N; = n)
liO

_ e M (\sy/j!- e MDAt — )" /(n — )
= *Z Z e~ M(At)"/n!

J=0 k=j+1
n—1 . .
1 n! s\J s\ n—J
= - — ) (- 1-— *)
n < (n J)j!(n—_j)! <t> ( t
n—1 . .
- X2 (- )
B i'(n—j —
= 0_] n—j 1 t t t
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