MVE550 2023 Lecture 12 Poisson processes, part 2 Dobrow chapter 6

Petter Mostad

Chalmers University

November 30, 2023

Poisson processes: Short review from last lecture

- ▶ A Poisson process $\{N_t\}_{t \ge 0}$ is defined with the requirements
 - A counting process.
 - $N_0 = 0$
 - Stationary increments.
 - Independent increments.
 - Either stating that X_t ~ Poisson(λt), or stating that, for t small, there is maximum one event in [0, t], and the probability of such an event is tλ.
- A Poisson process can also be defined by counting sums of inter-arrival times X_i ~ Exponential(λ).
- The *n*'th arrival time S_n distributed as $Gamma(n, \lambda)$.
- ► Today:
 - More than one "type" of event.
 - More properties of event distributions.
 - Nonhomogeneous and spatial point processes.

At a hospital, births occur at a rate λ . For each birth there is a probability p = 0.52 that the child is a boy. The situation can be modelled in two ways:

- ► The counts c_1 of boys and c_2 of girls are modelled with two independent Poisson processes, $\left\{N_t^{(1)}\right\}_{t\geq 0}$ and $\left\{N_t^{(2)}\right\}_{t\geq 0}$, with parameters λp and $\lambda(1-p)$, respectively.
- ► The total number of births *N* is modelled with one Poisson process ${N_t}_{t>0}$ and counts are then Binomially distributed given *N*:

$$c_1 \sim \mathsf{Binomial}(N; p)$$
 $c_2 = N - c_1$

Luckily, we can prove that these ways of modelling are equivalent.

Superposition and thinning

• LEMMA¹: Let $\{N_t^{(1)}\}_{t\geq 0}, \ldots, \{N_t^{(n)}\}_{t\geq 0}$ be independent Poisson processes with parameters $\lambda p_1, \ldots, \lambda p_n$, respectively, where $p = (p_1, \ldots, p_n)$ is a probability vector. If $c = (c_1, \ldots, c_n)$ are the counts after time t (so that $c_i = N_t^{(i)}$), an equivalent model is

 $c \sim \text{Multinomial}(N_t, p)$

where $\{N_t\}_{t>0}$ is a Poisson process with parameter λ .

- Proof on next page.
- Starting with one Poisson process and creating another by independently selecting arrivals with probability p and considering only those is called *thinning*.
- Starting with several independent Poisson processes and considering their joint counts is called *superposition*.

 $^{^1\}mbox{A}$ somewhat different treatment compared to Dobrow

Using the model with independent Poisson processes, the probability of observing the count vector c after time t is (writing N = c₁ + ··· + c_n)

$$\prod_{i=1}^{n} \text{Poisson}(c_i; \lambda p_i t) = \prod_{i=1}^{n} e^{-\lambda p_i t} \frac{(\lambda p_i t)^{c_i}}{c_i!}$$
$$= e^{-\lambda t} (\lambda t)^N \prod_{i=1}^{n} \frac{p_i^{c_i}}{c_i!} = e^{-\lambda t} \frac{(\lambda t)^N}{N!} \cdot \frac{N!}{c_1! \cdots c_n!} p_1^{c_1} \cdots p_n^{c_n}$$
$$= \text{Poisson}(N; \lambda t) \cdot \text{Multinomial}(c; N, p)$$

The process for N inherits independent and stationary increments from the sub-processes, so it follows it is also a Poisson process.

- ► LEMMA²: Let $\{N_t\}_{t\geq 0}$ be a Poisson process with parameter λ . If we fix that $N_t = k$ and we select uniformly randomly one of the k arrivals, then its arrival time is uniformly distributed on the interval [0, t].
- Proof on next page.
- Consequence: We can simulate a Poisson process on [0, t] by first simulating N_t, and then simulating the N_t arrival times as independently uniformly distributed on the interval [0, t].
- Consequence: When N_t = k is fixed, the n'th arrival time for n ≤ k has the same distribution as the n'th value among k independent uniformly distributed variables on [0, t].

²A somewhat different treatment compared to Dobrow

Proof

$$\begin{aligned} &\Pr\left(S_{k} \geq s \mid k \text{ uniformly random in } \{1, \dots, n\}, N_{t} = n\right) \\ &= \frac{1}{n} \sum_{k=1}^{n} \Pr\left(S_{k} \geq s \mid N_{t} = n\right) = \frac{1}{n} \sum_{k=1}^{n} \sum_{j=0}^{k-1} \Pr\left(N_{s} = j \mid N_{t} = n\right) \\ &= \frac{1}{n} \sum_{k=1}^{n} \sum_{j=0}^{k-1} \frac{\Pr\left(N_{s} = j\right) \Pr\left(N_{t-s} = n - j\right)}{\Pr\left(N_{t} = n\right)} \\ &= \frac{1}{n} \sum_{j=0}^{n-1} \sum_{k=j+1}^{n} \frac{e^{-\lambda s} (\lambda s)^{j} / j! \cdot e^{-\lambda (t-s)} (\lambda (t-s))^{n-j} / (n-j)!}{e^{-\lambda t} (\lambda t)^{n} / n!} \\ &= \frac{1}{n} \sum_{j=0}^{n-1} (n-j) \frac{n!}{j! (n-j)!} \left(\frac{s}{t}\right)^{j} \left(1 - \frac{s}{t}\right)^{n-j} \\ &= \left[\sum_{j=0}^{n-1} \frac{(n-1)!}{j! (n-j-1)!} \left(\frac{s}{t}\right)^{j} \left(1 - \frac{s}{t}\right)^{n-j-1}\right] \left(1 - \frac{s}{t}\right) \\ &= 1 - \frac{s}{t} \end{aligned}$$

- A collection of random variables {N_A}_{A⊆ℝ^d} is a spatial Poisson process with parameter λ if
 - For each bounded set $A \subseteq \mathbb{R}^d$, N_A has a Poisson distribution with parameter $\lambda|A|$.
 - ▶ Whenever $A \subseteq B$, $N_A \leq N_B$ (i.e., spatial counting process).
 - Whenever A and B are disjoint sets, N_A and N_B are independent.
- Simulate by first simulating the total (Poisson distributed) and then place points independently uniformly within the area.
- ► A special case of a *point process*.
- One may use simulations to estimate properties such as the average distance to the nearest neighbour (or the third nearest neighbour or whatever).
- Quite useful models in practice.

- A counting process {N_t}_{t≥0} is a non-homogeneous Poisson process with intensity function λ(t) if
 - *N*₀ = 0.
 For 0 < s < t,

$$N_t - N_s \sim ext{Poisson}\left(\int_s^t \lambda(x) \, dx\right)$$

- It has independent increments.
- Again a very flexible and useful model in practice.
- One may have non-homogeneous spatial Poisson processes.