MVE550 2023 Lecture 13 Dobrow Chapter 7
 Continuous-time Markov chains part 1

Petter Mostad
Chalmers University

December 1, 2023

Introduction to continuous-time Markov chains

- We now consider general continuous-time discrete state space Markov chains.
- Comparing to counting processes: We can now potentially jump between any two states.
- Comparing to the discrete-time Markov chains: We now model that we stay in each state for some real-valued amount of time.
- The Markov property is a type of "memorylessness": The property will imply that the amount of time spent in each state is Exponentially distributed.
- Very useful tool, can be used to model for example queues.

Example

- We have previously discussed modelling the weather as a discrete time Markov chain where the weather each day is "rain", "snow", or "clear", with transition matrix for example

$$
P=\left[\begin{array}{lll}
0.2 & 0.6 & 0.2 \\
0.1 & 0.8 & 0.1 \\
0.1 & 0.4 & 0.5
\end{array}\right]
$$

- A more realistic model is that each weather type lasts some length of time, before changing to a different weather type:
- Let's say the time each weather type lasts is Exponentially distributed with parameters q_{r}, q_{s} and q_{c} (so that expected durations of weather types are $1 / q_{r}, 1 / q_{s}, 1 / q_{c}$, respectively).
- Transitions after this time could happen according to a transition matrix, for example

$$
\tilde{P}=\left[\begin{array}{ccc}
0 & 3 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 2 \\
1 / 5 & 4 / 5 & 0
\end{array}\right] .
$$

- Note that the process is completely described by parameters q_{r}, q_{s}, q_{c} and $p_{i j}$, where $\tilde{P}_{i j}=p_{i j}$. Note that $p_{i i}=0$ for all i.

Continuous time Markov chains

- A continuous time stochastic process $\left\{X_{t}\right\}_{t \geq 0}$ with discrete state space S is a continuous time Markov chain if

$$
P\left(X_{t+s}=j \mid X_{s}=i, X_{u}, 0 \leq u<s\right)=P\left(X_{t+s}=j \mid X_{s}=i\right)
$$

where $s, t \geq 0$ and $i, j, x_{u} \in S$.

- The process is time-homogeneous if for $s, t \geq 0$ and all $i, j \in S$

$$
P\left(X_{t+s}=j \mid X_{s}=i\right)=P\left(X_{t}=j \mid X_{0}=i\right)
$$

- We then define the transition function as the matrix function $P(t)$ with the entries of the matrix given by

$$
P(t)_{i j}=P\left(X_{t}=j \mid X_{0}=i\right)
$$

The Chapman-Kolmogorov Equations

For the transition function $P(t)$ we have

- $P(s+t)=P(s) P(t)$
(Note: Matrix equation!)
- $P(0)=I$
- Note similarity to the properties of the exponential function! However, $P(t)$ is a matrix, not a number.
- Example:
- A Poisson process with parameter λ is a continuous time time-homogeneous Markov chain.
- We get

$$
P(t)=\left[\begin{array}{ccccc}
e^{-\lambda t} & (\lambda t) e^{-\lambda t} & (\lambda t)^{2} e^{-\lambda t} / 2! & (\lambda t)^{3} e^{-\lambda t} / 3! & \cdots \\
0 & e^{-\lambda t} & (\lambda t) e^{-\lambda t} & (\lambda t)^{2} e^{-\lambda t} / 2! & \cdots \\
0 & 0 & e^{-\lambda t} & (\lambda t) e^{-\lambda t} & \cdots \\
0 & 0 & 0 & e^{-\lambda t} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Holding times are exponentially distributed

- Define T_{i} as the time the continuous-time Markov chain started in i stays in i before moving to a different state, so that for any $s>0$

$$
P\left(T_{i}>s\right)=P\left(X_{u}=i, 0 \leq u \leq s\right)
$$

- The distribution of T_{i} is memoryless and thus exponential.
- We define q_{i} so that

$$
T_{i} \sim \text { Exponential }\left(q_{i}\right)
$$

- Remember that this means that the average time the process stays in i is $1 / q_{i}$. The rate of transition out of the state is q_{i}.
- Note that we can have $q_{i}=0$ meaning that the state i is absorbing: $P\left(T_{i}>s\right)=1$.

The embedded chain

- Define a new stochastic process by listing the states the chain visits. This will be a discrete time Markov chain.
- It is called the embedded chain; transition matrix is denoted \tilde{P}.
- Note that \tilde{P} has zeros along its diagonal!
- Note that the continuous time Markov chain is completely determined by the expected holding times $\left(1 / q_{1}, \ldots, 1 / q_{k}\right)$ and the transition matrix \tilde{P} of the embedded chain. We write $p_{i j}$ for the entries of \tilde{P}.

Describing the chain using transition rates

A way to describe a continuous-time Markov chain is to describe $k \times(k-1)$ independent "alarm clocks":

- For states i and j so that $i \neq j$, let $q_{i j}$ be the parameter of an Exponentially distributed random variable representing the time until an "alarm clock" rings.
- When in state i, wait until the first alarm clock rings, then move to the state given by the index j of that alarm clock. This defines a continuous-time Markov chain.
- The time until the first alarmclock rings is Exponentially distributed with parameter given by

$$
\begin{equation*}
q_{i}=q_{i 1}+q_{i 2}+\cdots+q_{i, i-1}+q_{i, i+1}+\cdots+q_{i k} \tag{1}
\end{equation*}
$$

i.e., the parameter of the holding time distribution at i.

- The chain is completely described by the rates $q_{i j}, i \neq j$.
- We saw above: The chain is also completely determined by the $p_{i j}$ and the q_{i}. The relationship is described by Equation 1 and, for $i \neq j$,

$$
p_{i j}=\frac{q_{i j}}{q_{i 1}+q_{i 2}+\cdots+q_{i, i-1}+q_{i, i+1}+\cdots+q_{i k}}=\frac{q_{i j}}{q_{i}} .
$$

The derivative of $P(t)$ at zero

- To relate $P(t)$ to the $q_{i j}$'s, we first relate them to $P^{\prime}(0)$.
- Assuming $P(t)$ is differentiable we can show that

$$
P^{\prime}(0)=\left[\begin{array}{ccccc}
-q_{1} & q_{12} & q_{13} & \ldots & q_{1 k} \\
q_{21} & -q_{2} & q_{23} & \ldots & q_{2 k} \\
q_{31} & q_{31} & -q_{3} & \ldots & q_{3 k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q_{k 1} & q_{k 2} & q_{k 3} & \ldots & -q_{k}
\end{array}\right]=Q
$$

where the q_{i} and the $q_{i j}$ are those defined earlier.

- Note that the rows of $P^{\prime}(0)$, i.e., Q, sum to zero!
- In fact we don't need to require a finite state space; discrete is enough.
- Q is called the (infinitesimal) generator of the chain.

Kolmogorov Forward Backward

- Prove: We get that for all $t \geq 0$,

$$
P^{\prime}(t)=P(t) Q=Q P(t)
$$

- Note what this means in terms of the components of $P(t)$:

$$
\begin{aligned}
P^{\prime}(t)_{i j} & =-P_{i j}(t) q_{j}+\sum_{k \neq j} P_{i k}(t) q_{k j} \\
P^{\prime}(t)_{i j} & =-q_{i} P_{i j}(t)+\sum_{k \neq i} q_{i k} P_{k j}(t)
\end{aligned}
$$

- Either line with equations above define a set of differential equations which the components of the matrix function $P(t)$ needs to fulfill.

The matrix exponential

- For any square matrix A define the matrix exponential as

$$
e^{A}=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}=I+A+\frac{1}{2} A^{2}+\frac{1}{6} A^{3}+\frac{1}{24} A^{4}+\ldots
$$

- The series converges for all square matrices A (we don't show this).
- Some important properties:
- $e^{0}=1$.
- $e^{A} e^{-A}=1$.
- $e^{(s+t) A}=e^{s A} e^{t A}$.
- If $A B=B A$ then $e^{A+B}=e^{A} e^{B}=e^{B} e^{A}$.
- $\frac{\partial}{\partial t} e^{t A}=A e^{t A}=e^{t A} A$.
- $P(t)=e^{t Q}$ is the unique solution to the differential equations $P^{\prime}(t)=Q P(t)$ for all $t \geq 0$ and $P(0)=I$.
- In R you may use expm from R package expm to compute exponential matrices.

Computing the matrix exponential

- Assume there exists an invertible matrix S and a matrix D such that $Q=S D S^{-1}$. Then (show!)

$$
e^{t Q}=S e^{t D} S^{-1}
$$

- If $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_{k}\end{array}\right]$ is a diagonal matrix, then (show!)
- Recall that if Q is diagonalizable it can be written as $Q=S D S^{-1}$ where D is diagonal with the eigenvalues along the diagonal, and S has the corresponding eigenvectors as columns.

