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Review from last time:

▶ Continuous-time discrete state space Markov chains.

▶ The generator matrix Q, consisting of rates.

▶ Exponentially distributed holding times.

▶ Connection with P̃, the embedded discrete-time chain.

▶ The matrix transition function P(t). P ′(t) = QP(t) = P(t)Q.

▶ The exponential matrix eA for a square matrix A, and its
computation.

▶ P(t) = etQ .
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Review: The matrix exponential

▶ For any square matrix A define the matrix exponential as

eA =
∞∑
n=0

1

n!
An = I + A+

1

2
A2 +

1

6
A3 +

1

24
A4 + . . .

▶ The series converges for all square matrices A (we don’t show this).

▶ Some important properties:
▶ e0 = I .
▶ eAe−A = I .
▶ e(s+t)A = esAetA.
▶ If AB = BA then eA+B = eAeB = eBeA.
▶ ∂

∂t
etA = AetA = etAA.

▶ P(t) = etQ is the unique solution to the differential equations
P ′(t) = QP(t) for all t ≥ 0 and P(0) = I .

▶ In R you may use expm from R package expm to compute
exponential matrices.
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Computing the matrix exponential

▶ Assume there exists an invertible matrix S and a matrix D such that
Q = SDS−1. Then (show!)

etQ = SetDS−1

▶ If D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk

 is a diagonal matrix, then (show!)

etD =


etλ1 0 . . . 0
0 etλ2 . . . 0
...

...
. . .

...
0 0 . . . etλk

.
▶ Recall that if Q is diagonalizable it can be written as Q = SDS−1

where D is diagonal with the eigenvalues along the diagonal, and S
has the corresponding eigenvectors as columns.
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Limiting and stationary distributions

▶ A probability vector v represents a limiting distribution if, for all
states i and j ,

lim
t→∞

Pij(t) = vj .

▶ A probability vector v represents a stationary distribution, if, for all
t ≥ 0,

v = vP(t)

▶ Note: v is a stationary distribution if and only if 0 = vQ.

▶ A limiting distribution is a stationary distribution but a stationary
distribution is not necessarily a limiting distribution.
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Review of limiting result for discrete-time chains

▶ An ergodic Markov chain has a unique positive stationary
distribution that is the limiting distribution.

▶ For discrete-time chains, v is stationary if vP = v where P is the
transition matrix.

▶ A discrete-time chain is ergodic if it is irreducible, aperiodic, and all
states have finite expected return times.
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Fundamental limit theorem for cont. time chains

▶ A continuous-time Markov chain is irreducible if for all i and j there
exists a t > 0 such that Pij(t) > 0.

▶ However, periodic continuous-time Markov chains do not exist: If
Pij(t) > 0 for some t > 0 then Pij(t) > 0 for all t > 0.

▶ Fundamental Limit Theorem: Let {Xt}t≥0 be a finite, irreducible,
continuous-time Markov chain with transition function P(t). Then
there exists a unique positive stationary distribution vector v which
is also the limiting distribution.

▶ The limiting distribution of such a chain can be found as the unique
v satisfying vQ = 0.
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Classification of finite-state continuous-time chains

▶ An absorbing communication class is one where there is zero
probability (i.e., zero rate) of leaving it to other communication
classes.

▶ For a finite-state continuous-time Markov chain (with finite holding
time parameters) there are two possibilities:
▶ The process is irreducible, and Pij(t) > 0 for all t > 0 and all i , j .
▶ The process contains one or more absorbing communication classes.

8 / 11



Absorbing states

▶ Assume {Xt}t≥0 is a continuous-time Markov chain with k states.
Assume the last state is absorbing and the rest are not. (They are
then transient).

▶ We have that qk = 0 and the entire last row must consist of zeros.
We get

Q =

[
V ∗
0 0

]
.

▶ Let F be the (k − 1)× (k − 1) matrix so that Fij (with i < k, j < k)
is the expected time spent in state j when the chain starts in i . We
can shown that F = −V−1 (see next page).

▶ F is called the fundamental matrix.

▶ Note that, if the chain starts in state i , the expected time until
absorbtion is the sum of the i ’th row of F . Thus the expected times
until absorbtion are given by the matrix product F1 of F with a
column of 1’s.
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Outline of proof (different from Dobrow’s)

▶ Generally, define D as the matrix with (1/q1, . . . , 1/qk) along its
diagonal, with all other entries zero. If there are no absorbing states

P̃ = DQ + I

▶ Write A− for a square matrix without its last row and column.

▶ If the last state is absorbing, so that qk = 0, we get

P̃− = D−Q− + I

▶ Let F ′ be the matrix where F ′
ij is the expected number of stays in

state j before absorbtion when starting in state i . As the lengths of
stays and changes in states are independent, we get F = F ′D−.

▶ From the theory of Chapter 3, we have that F ′ = (I − P̃−)
−1.

▶ We get

F = F ′D− = (I − P̃−)
−1D− = (−D−Q−)

−1D− = (−Q−)
−1.
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Stationary distribution of the embedded chain

▶ The embedded chain of a continuous-time Markov chain: The
discrete-time Markov chain where holding times are ignored.

▶ Stationary distributions for the embedded chain and for the
continuous-time chain are generally not the same!

▶ However, there is a simple relationship: A probability vector π is a
stationary distribution for a continuous-time Markov chain if and
only if ψ is a stationary distribution for the embedded chain, where
ψj = Cπjqj for a constant C making the entries of ψ add to 1.

▶ Proof: Using notation above, we have P̃ = DQ + I . For any vector
v we get vP̃ = vDQ + v , so vP̃ = v if and only if vDQ = 0.
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