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Review from last time:

▶ Continuous-time Markov chains, described by a generator matrix Q,
consisting of rates.

▶ P(t) = etQ .

▶ Limiting and stationary distributions, the fundamental limit theorem.

▶ Solve vQ = 0 to find limiting distribution.

▶ Absorbing states, the fundamental matrix F = −V−1.

▶ The stationary distribution of a continuous-time chain and its
embedded chain are different, but related.
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Global Balance

▶
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Let v = (v1, v2, v3) be the stationary distribution. At
v , the flow into a state must be equal to the flow out of that state.

▶ We get: 2v1 = 2v2 + 2v3, 3v2 = 1v1 + 2v3, and 4v3 = 1v1 + 1v2.

▶ Note that these are exactly the equations we get from vQ = 0:

(v1, v2, v3)

−2 1 1
2 −3 1
2 2 −4

 = 0

▶ This happens because vQ = 0 gives for each state j∑
i ̸=j

viqij = vjqj

▶ These are called the global balance equations.

▶ Generalization (proof in Dobrow): If A is a set of states, then the long
term rates of movement into and out of A are the same:∑

i /∈A

∑
j∈A

viqij =
∑
i /∈A

∑
j∈A

vjqji
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Local balance and time reversibility

▶ Local balance: A stronger condition: The flow between every pair of
states is balanced. This is not true for all models!

▶ For the model above the local balance equations are
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1v1 = 2v2, 1v2 = 2v3, and 2v3 = 1v1.
▶ These are not satisfied by the stationary v ! (Check it).
▶ An irreducible continuous-time Markov chain with stationary

distribution v is said to be time reversible if for all i , j ,

viqij = vjqji

which is in fact the local balance condition.
▶ Note: The rate of observed changes from i to j is the same as the

rate of observed changes from j to i . Thus this is called time
reversibility.

▶ Note that (similar to discrete chains): If a probability vector v
satisfies local balance condition, then v is a stationary distribution.
(Easy to show directly).
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Markov processes with transition graphs that are trees

▶ A tree is a graph that does not contain cycles.

▶ Assume the transition graph of an irreducible continuous-time
Markov chain is a tree.

▶ In a tree, any edge between two states divides all states into two
groups (each on each side of the edge). Thus, the flow must be
balanced across each edge.

▶ It follows that the Markov chain must satisfy the local balance
condition, i.e., be time reversible, i.e., viqij = vjqji for all i and j .

▶ More formally, this can be proved using the generalized global
balance property.

▶ Note that the process can be time reversible even if the transition
graph is not a tree.

5 / 11



Example

▶ Consider the continuous-time Markov chain with transition graph
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▶ As the transition graph is a tree, the chain is necessarily time
reversible. We can find the stationary distribution by considering the
local balance equations:

4v1 = 1v2, 1.5v2 = 0.5v3, 2v2 = 1v4

▶ Together with the equation v1 + v2 + v3 + v4 = 1 we easily get the
limiting distribution

v =

(
1

25
,
4

25
,
12

25
,
8

25

)
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Birth-and-death processes

▶ A birth-and-death process is a continuous-time Markov chain where
the state space is the set of nonnegative integers and transitions
only occur to neighbouring integers.

▶ The process is necessarily time-reversible, as the transition graph is a
tree (in fact, a line).

▶ We denote the rate of births from i to i + 1 with λi , and the rate of
deaths from i to i − 1 with µi .

▶ The generator matrix is

Q =


−λ0 λ0 0 0 . . .
µ1 −(µ1 + λ1) λ1 0 . . .
0 µ2 −(µ2 + λ2) λ2 . . .
0 0 µ3 −(µ3 + λ3) . . .
...

...
...

...
. . .


▶ Provided

∑∞
k=1

∏k
i=1

λi−1

µi
< ∞, the unique stationary distribution is

given by

vk = v0

k∏
i=1

λi−1

µi
for k = 1, 2, . . . , v0 =

(
1 +

∞∑
k=1

k∏
i=1

λi−1

µi

)−1
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Example

▶ The simplest example of a birth-and-death process is one where all
birth rates λi and all death rates µi are the same values λ and µ,
respectively.

▶ We get that

vk = v0

k∏
i=1

λ

µ
= v0

(
λ

µ

)k

v0 =

( ∞∑
k=0

(
λ

µ

)k
)−1

=
1

1 + λ
µ + (λµ )

2 + . . .
=

1

1/(1− λ
µ )

= 1− λ

µ

▶ We see that the limiting distribution is Geometric
(
1− λ

µ

)
.

▶ For example, the long-term average value of Xt will be

λ/µ

1− λ/µ
=

λ

µ− λ
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Queueing theory

▶ Birth-and-death processes are special cases of queues.

▶ In the more general theory of queues:
▶ The arrival process (“births”) need not be a Poisson process, with

exponentially distributed inter-arrival times.
▶ The service times in the system need not be exponentially

distributed.
▶ There can be many other generalizations, such as how many servers

there are, how the servers work, how the lines work, etc.

▶ One can use notation A/B/n where A denotes arrival process, B
denotes service process, and n the number of servers.

▶ With this notation, our birth-and-death model above with constant
birth and death rates is denoted M/M/1. (M means Markov).

▶ Generalize our results to the case M/M/c by taking into account
that some servers are idle when there are fewer than c customers.
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Little’s formula
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Little’s formula is valid when customers arrive at rate λ, and stay an expected
time W . The left line represents the average arrival times of customers: It has
slope λ. The right line represents the average departure time of customers.
The horizontal distance between the lines is W . The vertical distance between
the lines will be L, the average number of customers in the system. Thus

λ =
L

W
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Poisson subordination

▶ We may simulate from a continuous time finite state Markov chain
by drawing the holding times from distributions Exponential(qi ),
where qi depends on the state i , and then use P̃.

▶ INSTEAD, always simulate holding times from Exponential(λ) where
λ is large, and allow movement back to the same state.

▶ Matematical formulation: Given generator matrix Q. If
λ ≥ max(q, . . . , qk) then
▶ R = 1

λ
Q + I is a stochastic matrix.

▶ We can write

P(t) = etQ = e−tλI etλR = e−tλ
∞∑
k=0

(tλR)k

k!
=

∞∑
k=0

Rk e
−λt(λt)k

k!
.

▶ Thus: To find the probability of going from i to j during time t:
1. Condition on number of changes occurring k ∼ Poisson(λt).
2. For each k, use k steps of discrete chain with transition matrix R.

▶ This provides a good way to compute etQ : Throw away terms where
k is over some limit. Better accuracy than using definition of
exponential matrix!

▶ Ths discrete chain has the same stationary distribution as the
continuous chain.
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