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Continuous-time continuous state space processes

» Having looked at

> Discrete-time discrete state space processes. (Discrete Markov
chains and Branching processes).

> Discrete-time continuous state space processes (not so much but we
had some MCMC examples).

> Continuous-time discrete state space processes (Poisson processes
and more generally continuous-time Markov chains).

» we now look at continuous-time continuous state space processes.

> We will look at two examples:

» Brownian motion.
» More generally, Gaussian processes.
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Brownian motion

» In a gas, atoms bump into each other and change course. Over
time, how does a single atom move, on average?

> If f(x,t) represents the probability density for the position x of an
atom at time t moving along a line, Albert Einstein showed that

2
o, 10

» The solution is 1
F(x,t) = ———e /2L,
NerT

2wt
So x ~ Normal(0, t) at time t¢.

» It turns out a single atom will move as simulated below. These
paths are sampled from a model called Brownian motion.
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Definition of Brownian motion

Brownian motion is a continuous-time stochastic process {B;}+>o with
the following properties:

1. By = 0.

2. For t > 0, B; ~ Normal(0, t) (so the variance is t, not the standard
deviation).

3. Fors,t >0, Birs — Bs ~ Normal(0, t).

4. For0<g<r<s<t, B, — Bsis independent from B, — B,.

5. The function t +— B; is continuous with probability 1.
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Simulation of Brownian motion

» Given time points 0 = tp < t; < tp < --- < t,, we write for i > 0:
Bfi = Bti—l + (Bfi - Bti—l) = Bti—l +Z

where Z; ~ NormaI(O, t; — t,',l).
» We get for independent Z3, ..., Z,,

B, = Z Z.
i=1

> A good way to simulate the path t +— B; on t € [0, a] is to set
t; = ai/n, simulate independently

Z; ~ Normal(0, a/n)

and compute
i
B, = Z Z.
j=1

> Note that we can also write Z; = y/a/nY;, where Y; ~ Normal(0, 1).
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Zooming in on a Brownian motion realization

What if we have a Brownian motion path simulated above, and want to
plot it at twice the detail?

> We have
Bi1a — By, = Zig ~ Normal (0, i)
! 2n ! 2”
a
By — Btz = Zit ~ Normal (0, Z)
» Reformulating using Z; = By,,, — By, we get

Zio ~ Normal (0, i) , Z; | Ziop ~ Normal (Z;O, i) .
2n 2n

» Conjugacy gives the posterior

1 a
Zio | Zi ~ N I =Zi,— ).
ol orma <2 4n>

> So we get By 2 by simulating Zjp given Z; as above and adding the
result to B,.
» NOTE: Procedure for simulating B; is unchanged if we scale x-axis
with a and scale y-axis with y/a! Fractal behaviour!
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Computing with Brownian motion

» To compute probabilities for Brownian motion, we generally use the
properties in the definition, e.g.,
» Biys — Bs ~ Normal(0, t)
> For0<g<r<s<t, B:— Bsis independent from B, — B,.

» Example: Show that By + B3 + 2B7 ~ Normal(0, 50).
» Example: Show that P(B, > 0| B; = 1) = 0.8413.
» Example: Show that Cov(Bs, B;) = min{s, t}.
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Random walks: What happens when n — co?

» A symmetric random walk is a discrete time Markov chain
50, 51, 52, ... where So =0 and

5n:X1+X2+"'+Xn

where Xi, X, ... are independent random variables with expectation
zero.

> |If we assume Var(X;) =1 we get Var(S,) = n.

> Interpolating between the values S, we can make this into a
continuous time process S; (see Dobrow). Var(S5;) =~ t.

» We may scale with an s > 0 to get processes St(s) = Sst/+/s where
we get lim;_ o0 Var(St(S)) =t.

» It turns out that the processes St(s) when s — oo are exactly
Brownian motion, no matter what type of X; we start with!

» This is the Donsker invariance principle.

v

We can see this effect in simulations.
» We can use this to find approximate properties of random walks.
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Nowhere differentiable paths

» We have seen in our simulations that paths of Brownian motion are
“jagged"” .

» We have also seen that this quality is unchanged if we change the
scale, i.e., look at smaller intervals.

» Formally note that B;j — B; ~ Normal(0, h) so that

Biin — B:

p ~ Normal(0,1/h)

» Using these observations as starting points, one may show that the
path (i.e., the function t — B;) of a Brownian motion is nowehere
differentiable, even though it is everywhere continuous.
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The multivariate normal distribution (review)

» Definition (one of many): A set of random variables X, ..., Xk has
a multivariate normal distribution if, for all real ay, ..., ax,
a1 X1 + - - + ag Xk is normally distributed.

» It is completely determined by the expectation vector
= (E(X1),...,E(Xk)) and the (k x k) covariance matrix X, where
Z,‘j = COV(X;,)(j).

» The joint density function on the vector x = (xi, ..., Xk) is

1 1 Ty—1
700 = g o (3 - TE - ).
where |27L| is the determinant of the matrix 27 X.

» All marginal distributions and all conditional distributions are also
multivariate normal.
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Gaussian processes

» A Gaussian process is a continuous-time stochastic process {X:}+>o
with the property that foralln>1and 0 < t; < tp < -+ < tp,
Xty ..., X, has a multivariate normal distribution.

» Thus, a Gaussian process is completely determined by its mean
function E(X;) and its covariance function Cov(X;, X;).

» Gaussian processes are extremely versatile as models. One may
generalize for example so that the index set (the t's) is R".
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Brownian motion and Gaussian processes

» Brownian motion is a Gaussian process, as we can show that any
a1By + -+ + ak By, is normally distributed.
> A Gaussian process {X;}+>o is Brownian motion if and only if
1. Xo =0.
2. E(X:) =0 for all t.
3. Cov(Xs, X¢) = min{s, t} for all s, t.
4. The function t — X; is a continuous with probability 1.

» The proof is fairly straightforward (see Dobrow).

» One may use the above for example when proving that something is
Brownian motion, if it is easier than using the definition directly.
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Transformations of Brownian motion

» The following transformations of Brownian motion are again
Brownian motion:

> {*Bt}tzo-
» (Bits — Bs)r>o for any s > 0.

> {%Bat} for any a > 0.
>0
» The process {X:}:>0 where Xo =0 and X; = tBy, for t > 0.
» The proofs are fairly straightforward.

» The process X; = x + B; where B, is Brownian motion and x is
some real number is called “Brownian motion started at x".
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Stopping times

» Proved above: For any fixed t, (Bys — Bt)sZO is Brownian motion.

» Does this also happen if we start the chain anew from T when T is
random? It depends!

» If T is the largest value less than 1 where By =0, is Br4s — Bt
Brownian motion?

> No!

» If T is the smallest value where B+ = a for some constant a, is
Br1s — Bt Brownian motion?

» Yes! The reason is that the event T = t can be determined based
on B, where 0 < r < t.

» Random T's that have this property are called stopping times. For
these Br,s — Bt is Brownian motion.
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The distribution of the first hitting time

Given a # 0 what is the distribution of the first hitting time
T,=min{t: B, = a}?

We prove below that
1 1 &
T, ~ Gamma (2 32 )

Assuming that a > 0 and using that T, is a stopping time we get for
any t > 0 that Pr (Bl/t >al| T, < 1/t) = Pr (Bl/t_-,-a > 0) =3
We also have

Pr (Bl/t >a, T,< l/t) _Pr (Bl/t > a)
Pr(T,<1/t) C Pr(T.<1/t)
It follows that Pr(T, < 1/t) =2Pr (By;; > a) and so
1
Pr<<t> :2Pr(Bl/t<a)71:2Pr<81<a\/5>f
T,

Taking the derivative w.r.t. t we get the Gamma density

T, (1) = 2\/% exp (—(af) ) 172,

Pr(Biye>al| T,<1/t)=
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Maximum of Brownian motion

» Define M; = maxo<s<¢ Bs.

» We may compute for a > 0 (using result from previous page)

Pr(My > a) =Pr (T, <t)=2Pr(B; > a) =Pr(|B:] > a)

v

Thus M; has the same distribution as |B;|, the absolute value of B;.
Example: What is the probability that M3 > 57
Example: Find t such that Pr(M, < 4) =0.9.

vy

16/16



