MVE550 2023 Lecture 17
 Dobrow Chapter 8, part 2

Petter Mostad

Chalmers University
December 12, 2023

Review: Brownian motion

- A process $\left\{B_{t}\right\}_{t \geq 0}$ where $B_{t} \sim \operatorname{Normal}(0, t)$. No parameters.
- Independent normally distributed increments.
- Continuous paths that are nowhere differentiable.
- Connection to random walks: The Donsker principle.
- Gaussian processes.
- Restarting Brownian motions at stopping times.

The distribution of the first hitting time

- Given $a \neq 0$ what is the distribution of the first hitting time $T_{a}=\min \left\{t: B_{t}=a\right\} ?$
- We prove below that

$$
\frac{1}{T_{a}} \sim \operatorname{Gamma}\left(\frac{1}{2}, \frac{a^{2}}{2}\right)
$$

- Assuming that $a>0$ and using that T_{a} is a stopping time we get for any $t>0$ that $\operatorname{Pr}\left(B_{1 / t}>a \mid T_{a}<1 / t\right)=\operatorname{Pr}\left(B_{1 / t-T_{a}}>0\right)=\frac{1}{2}$.
- We also have

$$
\operatorname{Pr}\left(B_{1 / t}>a \mid T_{a}<1 / t\right)=\frac{\operatorname{Pr}\left(B_{1 / t}>a, T_{a}<1 / t\right)}{\operatorname{Pr}\left(T_{a}<1 / t\right)}=\frac{\operatorname{Pr}\left(B_{1 / t}>a\right)}{\operatorname{Pr}\left(T_{a}<1 / t\right)} .
$$

- It follows that $\operatorname{Pr}\left(T_{a}<1 / t\right)=2 \operatorname{Pr}\left(B_{1 / t}>a\right)$ and so

$$
\operatorname{Pr}\left(\frac{1}{T_{a}}<t\right)=2 \operatorname{Pr}\left(B_{1 / t}<a\right)-1=2 \operatorname{Pr}\left(B_{1}<a \sqrt{t}\right)-1 .
$$

- Using $B_{1} \sim \operatorname{Normal}(0,1)$ and taking the derivative w.r.t. t we get the Gamma density above:

$$
\pi_{1 / T_{a}}(t)=2 \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(a \sqrt{t})^{2}\right) \frac{a}{2} t^{-1 / 2}
$$

Maximum of Brownian motion

- Define $M_{t}=\max _{0 \leq s \leq t} B_{s}$.
- We may compute for a >0 (using result from previous page)

$$
\operatorname{Pr}\left(M_{t}>a\right)=\operatorname{Pr}\left(T_{a}<t\right)=2 \operatorname{Pr}\left(B_{t}>a\right)=\operatorname{Pr}\left(\left|B_{t}\right|>a\right)
$$

- Thus M_{t} has the same distribution as $\left|B_{t}\right|$, the absolute value of B_{t}.
- Example: What is the probability that $M_{3}>5$?
- Example: Find t such that $\operatorname{Pr}\left(M_{t} \leq 4\right)=0.9$.

Zeros of Brownian motion

- Let L be the last zero in $(0,1)$ of Brownian motion. (In other words, $L=\max \left\{t: 0<t<1, B_{t}=0\right\}$. Then

$$
L \sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

- Outline of proof on next page.
- Consequence: Let L_{t} be the last zero in $(0, t)$. Then

$$
L_{t} / t \sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

- Note: The probability that Brownian motion has at least one zero in (r, t) for $0 \leq r<t$ is $1-\operatorname{Pr}\left(L_{t}<r\right)$.
- Note: The cumulative distribution for the Beta density can be computed with the arcsin function:

$$
\operatorname{Pr}\left(L_{t}<r\right)=\int_{0}^{r / t} \operatorname{Beta}\left(s ; \frac{1}{2}, \frac{1}{2}\right) d s=\frac{2}{\pi} \arcsin \left(\sqrt{\frac{r}{t}}\right)
$$

Outline of proof

$$
\begin{aligned}
\operatorname{Pr}(L>s) & =\int_{-\infty}^{\infty} \operatorname{Pr}\left(L>s \mid B_{s}=t\right) \operatorname{Normal}(t ; 0, s) d t \\
& =2 \int_{-\infty}^{0} \operatorname{Pr}\left(L>s \mid B_{s}=t\right) \operatorname{Normal}(t ; 0, s) d t \\
& =2 \int_{-\infty}^{0} \operatorname{Pr}\left(M_{1-s}>-t\right) \operatorname{Normal}(t ; 0, s) d t \\
& =2 \int_{0}^{\infty} 2 \operatorname{Pr}\left(B_{1-s}>t\right) \operatorname{Normal}(t ; 0, s) d t \\
& =4 \int_{0}^{\infty} \int_{t}^{\infty} \operatorname{Normal}(r ; 0,1-s) \operatorname{Normal}(t ; 0, s) d r d t \\
& =\cdots \\
& =\frac{1}{\pi} \int_{s}^{1} \frac{1}{\sqrt{x(1-x)}} d x \\
& =\int_{s}^{1} \operatorname{Beta}\left(x ; \frac{1}{2}, \frac{1}{2}\right) d x
\end{aligned}
$$

Brownian bridge

- Define a Gaussian process X_{t} by conditioning Brownian motion B_{t} on $B_{1}=0$. Then X_{t} is a Brownian bridge.
- If $0<s<t<1$ then $\left(B_{s}, B_{t}, B_{1}\right)$ is multivariate normal with

$$
\mathrm{E}\left(\left(B_{s}, B_{t}, B_{1}\right)\right)=(0,0,0), \quad \operatorname{Var}\left(\left(B_{s}, B_{t}, B_{1}\right)\right)=\Sigma=\left[\begin{array}{lll}
s & s & s \\
s & t & t \\
s & t & 1
\end{array}\right]
$$

Conditioning on $B_{1}=0$ and using properties of the multivariate normal (or see Dobrow) we get $\mathrm{E}\left(X_{t}\right)=0$ and

$$
\operatorname{Cov}\left(X_{s}, X_{t}\right)=s-s t
$$

- Define another Gaussian process with $Y_{t}=B_{t}-t B_{1}$. Then we see that $\mathrm{E}\left(Y_{t}\right)=0$ and (when $0<s<t<1$)

$$
\operatorname{Cov}\left(Y_{s}, Y_{t}\right)=s-s t
$$

It follows that this is identical to the Brownian bridge defined above.

- Example: Estimate by simulation: If a Brownian motion fulfills $B_{1}=0$, what is the probability that it has values below -1 ?

Brownian motion with a drift

- For real μ and $\sigma>0$ define the Gaussian process X_{t} as

$$
X_{t}=\mu t+\sigma B_{t}
$$

This is Brownian motion with a drift, and is often a more useful model than standard Brownian motion.

- Examples (combining with the Donsker principle):
- The amount won or lost in a game of chance that is not fair (approximating discrete winnings / losses with continuous changes).
- The score difference between two competing sports teams (approximating this difference with a continuous function).
- This is a Gaussian process with continuous paths and stationary and independent increments.
- Example: Computing the chance of winning team game based on intermdiate score.
- Note: If a Brownian motion with drift is observed at points y_{1}, \ldots, y_{n} and μ and σ are not fixed, there are priors so that we can do conjugate analysis, and analytically get a posterior process. However this posterior process is not a Gaussian process.

Geometric Brownian motion

- The stochastic process

$$
G_{t}=G_{0} e^{\mu t+\sigma B_{t}}
$$

where $G_{0}>0$ is called geometric Brownian motion with drift parameter μ and variance parameter σ^{2}.

- $\log \left(G_{t}\right)$ is a Gaussian process with expectation $\log \left(G_{0}\right)+\mu t$ and variance $t \sigma^{2}$.
- Show that
- $\mathrm{E}\left(G_{t}\right)=G_{0} e^{t\left(\mu+\sigma^{2} / 2\right)}$
- $\operatorname{Var}\left(G_{t}\right)=G_{0}^{2} e^{2 t\left(\mu+\sigma^{2} / 2\right)}\left(e^{t \sigma^{2}}-1\right)$
- Natural model for things that develop by multiplication of random independent factors, rather than addition of random independent increments. Example: Stock prices.

Modelling stock price with geometric Brownian motion

- To model the price of a stock, it is reasonable to
- use a continuous-time stochastic model.
- consider the factor with which it changes, not the differences in prices.
- consider normal distributions for such factors (? at least for short time differences?)
- use a parameter for the trend of the price, and one for the variability of the price.
- make a Markov assumption(??? or not???)
- This leads to using a geometric Brownian motion as model

$$
G_{t}=G_{0} e^{\mu t+\sigma B_{t}}
$$

In this context σ is called the volatility of the stock.

- Example: A stock price is modelled with $G_{0}=67.3, \mu=0.08$, $\sigma=0.3$. What is the probability that the price is above 100 after 3 years?

