MVE550 2023 Lecture 18 Dobrow Chapter 8, part 3

Petter Mostad

Chalmers University

December 14, 2023

- ▶ A process $\{B_t\}_{t\geq 0}$ where $B_t \sim \text{Normal}(0, t)$. No parameters.
- Restarting Brownian motions at stopping times.
- First hitting times.
- Maximum of Brownian motion.
- Zeros of Brownian Motion.
- Brownian bridge.
- Brownian motion with a drift.

How many zeros does B_t have in the interval [0, s]?

• If L_s is the last zero in [0, s), we have

$$L_s/s \sim {\sf Beta}\left(rac{1}{2},rac{1}{2}
ight),$$

which means that $0 < L_s < s$ with probability 1.

- Repeating the argument, we have that 0 < L_{Ls} < L_s with probability 1.
- Conclusion: With probability 1, there is an infinite number of zeros [0, s) for any s > 0.

The stochastic process

$$G_t = G_0 e^{\mu t + \sigma B_t}$$

where $G_0 > 0$ is called *geometric Brownian motion* with drift parameter μ and variance parameter σ^2 .

- ▶ $\log(G_t)$ is a Gaussian process with expectation $\log(G_0) + \mu t$ and variance $t\sigma^2$.
- Show that

•
$$E(G_t) = G_0 e^{t(\mu + \sigma^2/2)}$$

- $Var(G_t) = G_0^2 e^{2t(\mu + \sigma^2/2)} (e^{t\sigma^2} 1)$
- Natural model for things that develop by multiplication of random independent factors, rather than addition of random independent increments. Example: Stock prices.

Modelling stock price with geometric Brownian motion

- To model the price of a stock, it is reasonable to
 - use a continuous-time stochastic model.
 - consider the *factor* with which it changes, not the differences in prices.
 - consider normal distributions for such factors (? at least for short time differences?)
 - use a parameter for the trend of the price, and one for the variability of the price.
 - make a Markov assumption(??? or not???)
- This leads to using a geometric Brownian motion as model

$$G_t = G_0 e^{\mu t + \sigma B_t}$$

In this context σ is called the *volatility* of the stock.

Example: A stock price is modelled with G₀ = 67.3, μ = 0.08, σ = 0.3. What is the probability that the price is above 100 after 3 years?

- A (European) stock option is a right (but not obligation) to buy a stock at a given time t in the future for a given price K.
- How much can you expect to earn from a stock option at that future time?
- We get that (see next page)

$$\mathsf{E}\left(\max\left(G_{t}-K,0\right)\right)=G_{0}e^{t\left(\mu+\sigma^{2}/2\right)}\mathsf{Pr}\left(B_{1}>\frac{\beta-\sigma t}{\sqrt{t}}\right)-K\,\mathsf{Pr}\left(B_{1}>\frac{\beta}{\sqrt{t}}\right)$$

where $\beta = (\log(K/G_0) - \mu t)/\sigma$.

Example: A stock price is modelled with $G_0 = 67.3$, $\mu = 0.08$, $\sigma = 0.3$. What is the expected payoff from an option to buy the stock at 100 in 3 years?

Proof

Prove the algebraic identity

$$e^{\sigma x}$$
 Normal $(x; 0, t) = e^{\sigma^2 t/2}$ Normal $(x; \sigma t, t)$

• Then, defining $\beta = (\log(K/G_0) - \mu t) / \sigma$, we get

$$E(\max(G_t - K, 0)) = E(\max(G_0 e^{\mu + \sigma B_t} - K, 0))$$

$$= \int_{-\infty}^{\infty} \max(G_0 e^{\mu t + \sigma x} - K, 0) \operatorname{Normal}(x; 0, t) dx$$

$$= \int_{\beta}^{\infty} (G_0 e^{\mu t + \sigma x} - K) \operatorname{Normal}(x; 0, t) dx$$

$$= G_0 e^{\mu t} \int_{\beta}^{\infty} e^{\sigma x} \operatorname{Normal}(x; 0, t) dx - K \int_{\beta}^{\infty} \operatorname{Normal}(x; 0, t) dx$$

$$= G_0 e^{t(\mu + \sigma^2/2)} \int_{\beta}^{\infty} \operatorname{Normal}(x; \sigma t, t) dx - K \int_{\beta}^{\infty} \operatorname{Normal}(x; 0, t) dx$$

$$= G_0 e^{t(\mu + \sigma^2/2)} \Pr\left(B_1 > \frac{\beta - \sigma t}{\sqrt{t}}\right) - K \Pr\left(B_1 > \frac{\beta}{\sqrt{t}}\right)$$

► A stochastic process $(Y_t)_{t \ge 0}$ is a *martingale* if for $t \ge 0$

$$\blacktriangleright \mathsf{E}(Y_t \mid Y_r, 0 \le r \le s) = Y_s \text{ for } 0 \le s \le t.$$

$$\models \mathsf{E}(|Y_t|) < \infty.$$

- Brownian motion is a martingale.
- ▶ $(Y_t)_{t\geq 0}$ is a martingale with respect to $(X_t)_{t\geq 0}$ if for all $t\geq 0$ ▶ $E(Y_t \mid X_r, 0 \leq r \leq s) = Y_s$ for $0 \leq s \leq t$.
 - $\models \mathsf{E}(|Y_t|) < \infty.$

► Example: Define $Y_t = B_t^2 - t$ for $t \ge 0$. Then Y_t is a martingale with respect to Brownian motion.

Let $G_t = G_0 e^{\mu t + \sigma B_t}$ be Geometric Brownian motion. We get

$$E(G_t | B_r, 0 \le r \le s)$$

$$= E(G_0 e^{\mu t + \sigma B_t} | B_r, 0 \le r \le s)$$

$$= E(G_0 e^{\mu (t-s) + \sigma (B_t - B_s)} e^{\mu s + \sigma B_s} | B_r, 0 \le r \le s)$$

$$= E(G_{t-s}) e^{\mu s + \sigma B_s}$$

$$= G_0 e^{(t-s)(\mu + \sigma^2/2)} e^{\mu s + \sigma B_s}$$

$$= G_s e^{(t-s)(\mu + \sigma^2/2)}$$

• We see that G_t is a martingale with respect to B_t if and only if $\mu + \sigma^2/2 = 0$.

Discounting future values of stocks

- When making investments, there is always a range of choices, some of which are sometimes called "risk free". Such investments may pay a fixed interest.
- ▶ When interests are compounded frequently, a reasonable model is that an investment of G_0 has a value G_0e^{rt} after time *t*, where *r* is the "risk free" investment rate of return.
- A common way to take this alternative into account is to instead "discount" all other investments with the factor e^{-rt}.
- ▶ For example, the *discounted* value of a stock can be modelled as

$$e^{-rt}G_t = e^{-rt}G_0e^{\mu t + \sigma B_t} = G_0e^{(\mu - r)t + \sigma B_t}$$

- A possible assumption about the trend μ of a stock price: The discounted value behaves as a Martingale with respect to Brownian motion.
- ► We get

$$\mu - r + \sigma^2/2 = 0$$
, i.e., $\mu = r - \sigma^2/2$.

The Black-Scholes formula for option pricing is based on

- Assuming the discounted stock price is a Martingale w.r.t. B_t .
- Using discounting when computing the value of the option.

We get

$$e^{-rt} \operatorname{E}(\max(G_t - K, 0)) = G_0 \operatorname{Pr}\left(B_1 > \frac{\beta - \sigma t}{\sqrt{t}}\right) - e^{-rt} \operatorname{K} \operatorname{Pr}\left(B_1 > \frac{\beta}{\sqrt{t}}\right)$$

where $\beta = (\log(K/G_0) - (r - \sigma^2/2)t)/\sigma$.

Example: With r = 0.02, $G_0 = 67.3$, $\sigma = 0.3$, t = 3, and K = 70, we get the discounted stock option price 14.3534.