
Duality in Linear Programming

4

In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal
simplex multipliers is a very useful concept. First, these shadow prices give us directly the marginal worth
of an additional unit of any of the resources. Second, when an activity is ‘‘priced out’’ using these shadow
prices, the opportunity cost of allocating resources to that activity relative to other activities is determined.
Duality in linear programming is essentially a unifying theory that develops the relationships between a
given linear program and another related linear program stated in terms of variables with this shadow-price
interpretation. The importance of duality is twofold. First, fully understanding the shadow-price interpretation
of the optimal simplex multipliers can prove very useful in understanding the implications of a particular
linear-programming model. Second, it is often possible to solve the related linear program with the shadow
prices as the variables in place of, or in conjunction with, the original linear program, thereby taking advantage
of some computational efficiencies. The importance of duality for computational procedures will become
more apparent in later chapters on network-flow problems and large-scale systems.

4.1 A PREVIEW OF DUALITY

We can motivate our discussion of duality in linear programming by considering again the simple example
given in Chapter 2 involving the firm producing three types of automobile trailers. Recall that the decision
variables are:

x1 = number of flat-bed trailers produced per month,

x2 = number of economy trailers produced per month,

x3 = number of luxury trailers produced per month.

The constraining resources of the production operation are the metalworking and woodworking capacities
measured in days per month. The linear program to maximize contribution to the firm’s overhead (in hundreds
of dollars) is:

Maximizez= 6x1+ 14x2+ 13x3,

subject to:

1
2x1+ 2x2+ x3 ≤ 24,

x1+ 2x2+ 4x3 ≤ 60, (1)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

After adding slack variables, the initial tableau is stated in canonical form in Tableau 1.
In Chapter 2, the example was solved in detail by the simplex method, resulting in the final tableau,

repeated here as Tableau 2.
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Tableau 1

Basic Current
variables values x1 x2 x3 x4 x5

x4 24 1
2 2 1 1

x5 60 1 2 4 1
(−z) 0 6 14 13

Tableau 2

Basic Current
variables values x1 x2 x3 x4 x5

x1 36 1 6 4 −1
x3 6 −1 1 −1 1

2
(−z) −294 −9 −11 −

1
2

As we saw in Chapter 3, the shadow prices,y1 for metalworking capacity andy2 for woodworking
capacity, can be determined from the final tableau as the negative of the reduced costs associated with the
slack variablesx4 andx5. Thus these shadow prices arey1 = 11 andy2 =

1
2, respectively.

We can interpret the shadow prices in the usual way. One additional day of metalworking capacity is worth
$1100, while one additional day of woodworking capacity is worth only $50. These values can be viewed as
the breakeven rents that the firm could pay per day for additional capacity of each type. If additional capacity
could be rented forlessthan its corresponding shadow price, it would be profitable to expand capacity in
this way. Hence, in allocating the scarce resources to the production activities, we have determined shadow
prices for the resources, which are the values imputed to these resources at the margin.

Let us examine some of the economic properties of the shadow prices associated with the resources.
Recall, from Chapter 3, Eq. (11), that the reduced costs are given in terms of the shadow prices as follows:

c j = c j −

m∑
i=1

ai j yi ( j = 1, 2, . . . , n).

Sinceai j is the amount of resourcei used per unit of activityj , andyi is the imputed value of that resource,
the term

m∑
i=1

ai j yi

is the total value of the resources used per unit of activityj . It is thus the marginal resource cost for using
that activity. If we think of the objective coefficientsc j as being marginal revenues, the reduced costsc j are
simply net marginal revenues (i.e., marginal revenue minus marginal cost).

For the basic variablesx1 andx3, the reduced costs are zero,

c1 = 6− 11(1
2)− 1

2(1) = 0,

c3 = 13− 11(1)− 1
2(4) = 0.

The values imputed to the resources are such that the net marginal revenue is zero on those activities operated
at a positive level. That is, for any production activity at positive level,marginal revenue must equal marginal
cost.
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The situation is much the same for the nonbasic variablesx2, x4, andx5, with corresponding reduced
costs:

c2 = 14− 11(2)− 1
2(2) = −9,

c4 = 0− 11(1)− 1
2(0) = −11,

c5 = 0− 11(0)− 1
2(1) = −1

2.

The reduced costs for all nonbasic variables are negative. The interpretation is that, for the values imputed
to the scarce resources,marginal revenue is less than marginal costfor these activities, so they should not be
pursued. In the case ofx2, this simply means that we should not produceanyeconomy trailers. The cases of
x4 andx5 are somewhat different, since slack variables represent unused capacity. Since the marginal revenue
of a slack activity is zero, its reduced cost equalsminus its marginal cost, which is just the shadow price of
the corresponding capacity constraint, as we have seen before.

The above conditions interpreted for the reduced costs of the decision variables are the familiar optimality
conditions of the simplex method. Economically we can see why they must hold. If marginal revenue exceeds
marginal cost for any activity, then the firm would improve its contribution to overhead byincreasingthat
activity. If, however, marginal cost exceeds marginal revenue for an activity operated at a positive level, then
the firm would increase its contribution bydecreasingthat activity. In either case, a new solution could be
found that is an improvement on the current solution. Finally, as we have seen in Chapter 3, those nonbasic
variables with zero reduced costs represent possible alternative optimal solutions.

Until now we have used the shadow prices mainly to impute the marginal resource cost associated with
each activity. We then selected the best activities for the firm to pursue by comparing the marginal revenue of
an activity with its marginal resource cost. In this case, the shadow prices are interpreted as the opportunity
costs associated with consuming the firm’s resources. If we now value the firm’s total resources at these
prices, we find their value,

v = 11(24)+ 1
2(60) = 294,

is exactly equal to the optimal value of the objective function of the firm’s decision problem. The implication
of this valuation scheme is that the firm’s metalworking and woodworking capacities have an imputed worth
of $264 and $30, respectively. Essentially then, the shadow prices constitute aninternal pricing system for
the firm’s resources that:

1. permits the firm to select which activity to pursue by considering only the marginal profitability of its
activities; and

2. allocates the contribution of the firm to its resources at the margin.

Suppose that we consider trying to determine directly the shadow prices that satisfy these conditions,
without solving the firm’s production-decision problem. The shadow prices must satisfy the requirement
that marginal revenue be less than or equal to marginal cost for all activities. Further, they must be non-
negative since they are associated with less-than-or-equal-to constraints in a maximization decision problem.
Therefore, the unknown shadow pricesy1 on metalworking capacity andy2 on woodworking capacity must
satisfy:

1
2 y1+ y2 ≥ 6,

2y1+ 2y2 ≥ 14,

y1+ 4y2 ≥ 13,

y1 ≥ 0, y2 ≥ 0.

These constraints require that the shadow prices be chosen so that the net marginal revenue for each activity
is nonpositive. If this were not the case, an improvement in the firm’s total contribution could be made by
changing the choice of production activities.
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Recall that the shadow prices were interpreted as breakeven rents for capacity at the margin. Imagine for
the moment that the firm does not own its productive capacity but has to rent it. Now consider any values for
the shadow prices, or rental rates, that satisfy the above constraints, sayy1 = 4 andy2 = 4. The total worth
of the rented capacities evaluated at these shadow prices isv = 24(4)+ 60(4) = 336, which is greater than
the maximum contribution of the firm. Since the imputed value of the firm’s resources is derived solely from
allocating the firm’s contribution to its resources,v = 336 is too high a total worth to impute to the firm’s
resources. The firm clearly could not break even if it had to rent its production capacity at such rates.

If we think of the firm as renting all of its resources, then surely it should try to rent them at least cost.
This suggests that we might determine the appropriate values of the shadow prices by minimizing the total
rental cost of the resources, subject to the above constraints. That is, solve the following linear program:

Minimize v = 24y1+ 60y2,

subject to:
1
2 y1 + y2 ≥ 6,

2y1 + 2y2 ≥ 14,

y1 + 4y2 ≥ 13, (2)

y1 ≥ 0, y2 ≥ 0.

If we solve this linear program by the simplex method, the resulting optimal solution isy1 = 11, y2 =
1
2,

andv = 294. These are exactly the desired values of the shadow prices, and the value ofv reflects that
the firm’s contribution is fully allocated to its resources. Essentially, the linear program (2), in terms of the
shadow prices, determines rents for the resources that would allow the firm to break even, in the sense that its
total contribution would exactly equal the total rental value of its resources. However, the firm in fact owns
its resources, and so the shadow prices are interpreted as the breakeven rates for rentingadditionalcapacity.

Thus, we have observed that, by solving (2), we can determine the shadow prices of (1) directly. Problem
(2) is called thedual of Problem (1). Since Problem (2) has a name, it is helpful to have a generic name for
the original linear program. Problem (1) has come to be called theprimal.

In solving any linear program by the simplex method, we also determine the shadow prices associated
with the constraints. In solving (2), the shadow prices associated with its constraints areu1 = 36, u2 = 0,
andu3 = 6. However, these shadow prices for the constraints of (2) are exactly the optimal values of the
decision variables of the firm’s allocation problem. Hence, in solving the dual (2) by the simplex method,
we apparently have solved the primal (1) as well. As we will see later, this will always be the case since ‘‘the
dual of the dual is the primal.’’ This is an important result since it implies that the dual may be solved instead
of the primal whenever there are computational advantages.

Let us further emphasize the implications of solving these problems by the simplex method. The opti-
mality conditions of the simplex method require that the reduced costs of basic variables be zero. Hence,

if x̂1 > 0, thenc1 = 6− 1
2 ŷ1− ŷ2 = 0;

if x̂3 > 0, thenc3 = 13− ŷ1− 4ŷ2 = 0.

These equations state that, if a decision variable of the primal is positive, then the corresponding constraint
in the dual must hold with equality. Further, the optimality conditions require that the nonbasic variables be
zero (at least for those variables with negative reduced costs); that is,

if c2 = 14− 2ŷ1− 2ŷ2 < 0, thenx̂2 = 0.

These observations are often referred to ascomplementary slacknessconditions since, if a variable is positive,
its corresponding (complementary) dual constraint holds with equality while, if a dual constraint holds with
strict inequality, then the corresponding (complementary) primal variable must be zero.
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These results are analogous to what we have seen in Chapter 3. If some shadow price is positive, then
the corresponding constraint must hold with equality; that is,

if ŷ1 > 0, then 1
2 x̂1+ 2x̂2+ x̂3 = 24;

if ŷ2 > 0, then x̂1+ 2x̂2+ 4x̂3 = 60.

Further, if a constraint of the primal is not binding, then its corresponding shadow price must be zero. In
our simple example there do not happen to be any nonbinding constraints, other than the implicit nonnega-
tivity constraints. However, the reduced costs have the interpretation of shadow prices on the nonnegativity
constraints, and we see that the reduced costs ofx1 andx3 are appropriately zero.

In this chapter we develop these ideas further by presenting the general theory of duality in linear
programming.

4.2 DEFINITION OF THE DUAL PROBLEM

The duality principles we have illustrated in the previous sections can be stated formally in general terms.
Let the primal problem be:

Primal

Maximizez=
n∑

j=1

c j x j ,

subject to:
n∑

j=1

ai j x j ≤ bi (i = 1, 2, . . . , m), (3)

x j ≥ 0 ( j = 1, 2, . . . , n).

Associated with this primal problem there is a corresponding dual problem given by:

Dual

Minimize v =

m∑
i=1

bi yi ,

subject to:
m∑

i=1

ai j yi ≥ c j ( j = 1, 2, . . . , n), (4)

yi ≥ 0 (i = 1, 2, . . . , m).

These primal and dual relationships can be conveniently summarized as in Fig. 4.1.
Without the variablesy1, y2, . . . , ym, this tableau is essentially the tableau form utilized in Chapters 2

and 3 for a linear program. The firstm rows of the tableau correspond to the constraints of the primal problem,
while the last row corresponds to the objective function of the primal problem. If the variablesx1, x2, . . . xn,

are ignored, the columns of the tableau have a similar interpretation for the dual problem. The firstn columns
of the tableau correspond to the constraints of the dual problem, while the last column corresponds to the
objective function of the dual problem. Note that there is one dual variable for each explicit constraint in the
primal, and one primal variable for each explicit constraint in the dual. Moreover, the dual constraints are the
familiar optimality condition of ‘‘pricing out’’ a column. They state that, at optimality, no activity should
appear to be profitable from the standpoint of its reduced cost; that is,

c j = c j −

m∑
i=1

ai j yi ≤ 0.
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Figure 4.1 Primal and dual relationships.

To illustrate some of these relationships, let us consider an example formulated in Chapter 1. Recall the
portfolio-selection problem, where the decision variables are the amounts to invest in each security type:

Maximizez= 0.043xA + 0.027xB + 0.025xC+ 0.022xD + 0.045xE,

subject to:

Cash xA + xB + xC + xD + xE ≤ 10,
Governments xB + xC + xD ≥ 4,

Quality 0.6xA + 0.6xB− 0.4xC− 0.4xD + 3.6xE ≤ 0,
Maturity 4xA + 10xB − xC − 2xD − 3xE ≤ 0,

xA ≥ 0, xB ≥ 0, xC ≥ 0, xD ≥ 0, xE ≥ 0.

The dual of this problem can be found easily by converting it to the standard primal formulation given in (3).
This is accomplished by multiplying the second constraint by−1, thus changing the ‘‘greater than or equal
to’’ constraint to a ‘‘less than or equal to’’ constraint. The resulting primal problem becomes:

Maximizez= 0.043xA + 0.027xB + 0.025xC+ 0.022xD + 0.045xE,

subject to:
xA + xB + xC + xD + xE ≤ 10,
− xB − xC − xD ≤ −4,

0.6xA + 0.6xB − 0.4xC − 0.4xD + 3.6xE ≤ 0,

4xA + 10xB − xC − 2xD − 3xE ≤ 0,

xA ≥ 0, xB ≥ 0, xC ≥ 0, xD ≥ 0, xE ≥ 0.

According to expression (4), the corresponding dual problem is:

Minimize v = 10y1− 4y2,

subject to:
y1 + 0.6y3+ 4y4 ≥ 0.043,

y1− y2+ 0.6y3+ 10y4 ≥ 0.027,

y1− y2− 0.4y3− y4 ≥ 0.025,

y1− y2− 0.4y3− 2y4 ≥ 0.022,

y1 + 3.6y3− 3y4 ≥ 0.045,
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y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0.

By applying the simplex method, the optimal solution to both primal and dual problems can be found to be:∗

Primal: xA = 3.36, xB = 0, xC = 0, xD = 6.48,

xE = 0.16, andz= 0.294;

Dual: y1 = 0.0294, y2 = 0, y3 = 0.00636,

y4 = 0.00244, andv = 0.294.

As we have seen before, the optimal values of the objective functions of the primal and dual solutions
are equal. Furthermore, an optimal dual variable is nonzero only if its associated constraint in the primal is
binding. This should be intuitively clear, since the optimal dual variables are the shadow prices associated with
the constraints. These shadow prices can be interpreted as values imputed to the scarce resources (binding
constraints), so that the value of these resources equals the value of the primal objective function.

To further develop that the optimal dual variables are the shadow prices discussed in Chapter 3, we note
that they satisfy the optimality conditions of the simplex method. In the final tableau of the simplex method,
the reduced costs of the basic variables must be zero. As an example, consider basic variablexA . The reduced
cost ofxA in the final tableau can be determined as follows:

cA = cA −

5∑
i=1

ai A yi

= 0.043− 1(0.0294)− 0(0)− 0.6(0.00636)− 4(0.00244) = 0.

For nonbasic variables, the reduced cost in the final tableau must be nonpositive in order to ensure that no
improvements can be made. Consider nonbasic variablexB, whose reduced cost is determined as follows:

cB = cB −

5∑
i=1

ai Byi

= 0.027− 1(0.0294)− 1(0)− 0.6(0.00636)− 10(0.00244) = −0.0306.

The remaining basic and nonbasic variables also satisfy these optimality conditions for the simplex method.
Therefore, the optimal dual variables must be the shadow prices associated with an optimal solution.

Since any linear program can be put in the form of (3) by making simple transformations similar to those
used in this example, then any linear program must have a dual linear program. In fact, since the dual problem
(4) is a linear program, it must also have a dual. For completeness, one would hope that the dual of the dual
is the primal (3), which is indeed the case. To show this we need only change the dual (4) into the form of
(3) and apply the definition of the dual problem. The dual may be reformulated as a maximization problem
with less-than-or-equal-to constraints, as follows:

Maximizev′ =

m∑
i=1

−bi yi ,

subject to:

m∑
i=1

− ai j yi ≤ −c j ( j = 1, 2, . . . , n), (5)

yi ≥ 0 (i = 1, 2, . . . , m).

∗ Excel spreadsheet available athttp://web.mit.edu/15.053/www/Sect4.2_Primal_Dual.xls
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Applying the definition of the dual problem and letting the dual variables bex j , j = 1, 2, . . . , n, we have

Minimize z′ =
n∑

j=1

−c j x j ,

subject to:
n∑

j=1

− ai j x j ≥ −bi (i = 1, 2, . . . , m), (6)

x j ≥ 0 ( j = 1, 2, . . . , n),

which, by multiplying the constraints by minus one and converting the objective function to maximization,
is clearly equivalent to the primal problem. Thus, thedual of the dual is the primal.

4.3 FINDING THE DUAL IN GENERAL

Very often linear programs are encountered in equality form with nonnegative variables. For example, the
canonical form, which is used for computing a solution by the simplex method, is in equality form. It is of
interest, then, to find the dual of the equality form:

Maximizez=
n∑

j=1

c j x j ,

subject to: n∑
j=1

ai j x j = bi (i = 1, 2, . . . , m), (7)

x j ≥ 0 ( j = 1, 2, . . . , n).

A problem in equality form can be transformed into inequality form by replacing each equation by two
inequalities. Formulation (7) can be rewritten as

Maximizez=
n∑

j=1

c j x j ,

subject to:
n∑

j=1

ai j x j ≤ bi

n∑
j=1

−ai j x j ≤ −bi


(i = 1, 2, . . . , m),

x j ≥ 0 ( j = 1, 2, . . . , n).

The dual of the equality form can then be found by applying the definition of the dual to this problem. Letting
y+i and y−i (i = 1, 2, . . . , m) be the dual variables associated with the firstm and secondm constraints,
respectively, from expression (4), we find the dual to be:

Minimize v =

m∑
i=1

bi y
+

i +

m∑
i=1

−bi y
−

i ,

subject to:

m∑
i=1

ai j y+i +
m∑

i=1

−ai j y−i ≥ c j ( j = 1, 2, . . . , n),
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y+i ≥ 0, y−i ≥ 0 (i = 1, 2, . . . , m).

Collecting terms, we have:

Minimize v =

m∑
i=1

bi (y+i − y−i ),

subject to:
m∑

i=1

ai j (y+i − y−i ) ≥ c j ( j = 1, 2, . . . , n),

y+i ≥ 0, y−i ≥ 0 (i = 1, 2, . . . , m).

Letting yi = y+i − y−i , and noting thatyi is unrestricted in sign, gives us the dual of the equality form (7):

Minimize v =

m∑
i=1

bi yi ,

subject to:
m∑

i=1

ai j yi ≥ c j ( j = 1, 2, . . . , n), (8)

yi unrestricted (i = 1, 2, . . . , m).

Note that the dual variables associated with equality constraints are unrestricted.
There are a number of relationships between primal and dual, depending upon whether the primal problem

is a maximization or a minimization problem and upon the types of constraints and restrictions on the variables.
To illustrate some of these relationships, let us consider a general maximization problem as follows:

Maximizez=
n∑

j=1

c j x j ,

subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m′),

n∑
j=1

ai j x j ≥ bi (i = m′ + 1, m′ + 2, . . . , m′′), (9)

n∑
j=1

ai j x j = bi (i = m′′ + 1, m′′ + 2, . . . , m),

x j ≥ 0 ( j = 1, 2, . . . , n).

We can change the general primal problem to equality form by adding the appropriate slack and surplus
variables, as follows:

Maximizez=
n∑

j=1

c j x j ,
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subject to:

n∑
j=1

ai j x j + xn+i = bi (i = 1, 2, . . . , m′),

n∑
j=1

ai j x j − xn+i = bi (i = m′ + 1, m′ + 2, . . . , m′′),

n∑
j=1

ai j x j = bi (i = m′′ + 1, m′′ + 2, . . . , m),

x j ≥ 0 ( j = 1, 2, . . . , n+m′′).

Letting yi , y′i , andy′′i be dual variables associated respectively with the three sets of equations, the dual of
(9) is then

Minimize v =

m′∑
i=1

bi yi +

m′′∑
i=m′+1

bi y
′

i +

m∑
i=m′′+1

bi y
′′

i ,

subject to:

m′∑
i=1

ai j yi +

m′′∑
i=m′+1

ai j y′i +
m∑

i=m′′+1

ai j y′′i ≥ c j (10)

yi ≥ 0,

−y′i ≥ 0,

wherey′′i is unrestricted in sign and the last inequality could be writteny′i ≤ 0. Thus, if the primal problem
is a maximization problem, the dual variables associated with the less-than-or-equal-to constraints are non-
negative, the dual variables associated with the greater-than-or-equal-to constraints are nonpositive, and the
dual variables associated with the equality constraints are unrestricted in sign.

These conventions reflect the interpretation of the dual variables as shadow prices of the primal problem.
A less-than-or-equal-to constraint, normally representing a scarce resource, has a positive shadow price,
since the expansion of that resource generates additional profits. On the other hand, a greater-than-or-
equal-to constraint usually represents an external requirement (e.g., demand for a given commodity). If that
requirement increases, the problem becomes more constrained; this produces a decrease in the objective
function and thus the corresponding constraint has a negative shadow price. Finally, changes in the righthand
side of an equality constraint might produce either negative or positive changes in the value of the objective
function. This explains the unrestricted nature of the corresponding dual variable.

Let us now investigate the duality relationships when the primal problem is cast inminimization, rather
than maximization form:

Minimize z=
n∑

j=1

c j x j ,
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subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m′),

n∑
j=1

ai j x j ≥ bi (i = m′ + 1, m′ + 2, . . . , m′′), (11)

n∑
j=1

ai j x j = bi (i = m′′ + 1, m′′ + 2, . . . , m),

x j ≥ 0 ( j = 1, 2, . . . , n).

Since the dual of the dual is the primal, we know that the dual of a minimization problem will be a maximization
problem. The dual of (11) can be found by performing transformations similar to those conducted previously.
The resulting dual of (11) is the following maximization problem:

Maximize v =

m′∑
i=1

bi yi +

m′′∑
i=m′+1

bi y
′

i +

m∑
i=m′′+1

bi y
′′

i ,

subject to:
m′∑

i=1

ai j yi +

m′′∑
i=m′+1

ai j y′i +
m∑

i=m′′+1

ai j y′′i ≥ c j (12)

yi ≤ 0 (i = 1, 2, . . . , m′),

y′i ≥ 0 (i = m′ + 1, m′ + 2, . . . , m′′).

Observe that now the sign of the dual variables associated with the inequality constraints has changed,
as might be expected from the shadow-price interpretation. In a cost-minimization problem, increasing the
available resources will tend to decrease the total cost, since the constraint has been relaxed. As a result, the
dual variable associated with a less-than-or-equal-to constraint in a minimization problem is nonpositive. On
the other hand, increasing requirements could only generate a cost increase. Thus, a greater-than-or-equal-to
constraint in a minimization problem has an associated nonnegative dual variable.

The primal and dual problems that we have just developed illustrate one further duality correspondence.
If (12) is considered as the primal problem and (11) as its dual, then unrestricted variables in the primal are
associated with equality constraints in the dual.

We now can summarize the general duality relationships. Basically we note that equality constraints in the
primal correspond to unrestricted variables in the dual, while inequality constraints in the primal correspond
to restricted variables in the dual, where the sign of the restriction in the dual depends upon the combination of
objective-function type and constraint relation in the primal. These various correspondences are summarized
in Table 4.1. The table is based on the assumption that the primal is a maximization problem. Since the dual
of the dual is the primal, we can interchange the words primal and dual in Table 4.1 and the correspondences
will still hold.

4.4 THE FUNDAMENTAL DUALITY PROPERTIES

In the previous sections of this chapter we have illustrated many duality properties for linear programming. In
this section we formalize some of the assertions we have already made. The reader not interested in the theory
should skip over this section entirely, or merely read the statements of the properties and ignore the proofs.
We consider the primal problem in inequality form so that the primal and dual problems are symmetric. Thus,
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Table 4.1

Primal (Maximize) Dual (Minimize)

i th constraint≤ i th variable≥ 0
i th constraint≥ i th variable≤ 0
i th constraint= i th variable unrestricted
j th variable≥ 0 j th constraint≥
j th variable≤ 0 j th constraint≤
j th variable unrestricted j th constraint=

any statement that is made about the primal problem immediately has an analog for the dual problem, and
conversely. For convenience, we restate the primal and dual problems.

Primal

Maximizez=
n∑

j=1

c j x j ,

subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m), (13)

x j ≥ 0 ( j = 1, 2, . . . , n).

Dual

Minimize v =

m∑
i=1

bi yi ,

subject to:
m∑

i=1

ai j yi ≥ c j ( j = 1, 2, . . . , n), (14)

yi ≥ 0 (i = 1, 2, . . . , m).

The first property is referred to as ‘‘weak duality’’ and provides a bound on the optimal value of the
objective function of either the primal or the dual. Simply stated, the value of the objective function for any
feasible solution to the primal maximization problem is bounded from above by the value of the objective
function for any feasible solution to its dual. Similarly, the value of the objective function for its dual is
bounded from below by the value of the objective function of the primal. Pictorially, we might represent the
situation as follows:

Dual
feasible

y v decreasing

Primal
feasible

x z increasing

The sequence of properties to be developed will lead us to the ‘‘strong duality" property, which states
that the optimal values of the primal and dual problems are in fact equal. Further, in developing this result,
we show how the solution of one of these problems is readily available from the solution of the other.
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Weak Duality Property. If x j , j = 1, 2, . . . , n, is a feasible solution to the primal problem and
yi , i = 1, 2, . . . , m, is a feasible solution to the dual problem, then

n∑
j=1

c j x j ≤

m∑
i=1

bi yi .

The weak duality property follows immediately from the respective feasibility of the two solutions. Primal
feasibility implies:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m) and x j ≥ 0 ( j = 1, 2, . . . , n),

while dual feasibility implies

m∑
i=1

ai j yi ≥ c j ( j = 1, 2, . . . , n) and yi ≥ 0 (i = 1, 2, . . . , m).

Hence, multiplying thei th primal constraint byyi and adding yields:

m∑
i=1

n∑
j=1

ai j x j yi ≤

m∑
i=1

bi yi ,

while multiplying the j th dual constraint byx j and adding yields:

n∑
j=1

m∑
i=1

ai j yi x j ≥

n∑
j=1

c j x j .

Since the lefthand sides of these two inequalities are equal, together they imply the desired result that

n∑
j=1

c j x j ≤

m∑
i=1

bi yi .

There are a number of direct consequences of the weak duality property. If we have feasible solutions
to the primal and dual problems such that their respective objective functions are equal, then these solutions
are optimal to their respective problems. This result follows immediately from the weak duality property,
since a dual feasible solution is an upper bound on the optimal primal solution and this bound is attained
by the given feasible primal solution. The argument for the dual problem is analogous. Hence, we have an
optimality property of dual linear programs.

Optimality Property. If x̂ j , j = 1, 2, . . . , n, is a feasible solution to the primal problem andŷi , i =
1, 2, . . . , m, is a feasible solution to the dual problem, and, further,

n∑
j=1

c j x̂ j =

m∑
i=1

bi ŷi ,

then x̂ j , j = 1, 2, . . . , n, is an optimal solution to the primal problem andŷi , i = 1, 2, . . . , m, is an
optimal solution to the dual problem.

Furthermore, if one problem has an unbounded solution, then the dual of that problem is infeasible. This
must be true for the primal since any feasible solution to the dual would provide an upper bound on the primal
objective function by the weak duality theorem; this contradicts the fact that the primal problem is unbounded.
Again, the argument for the dual problem is analogous. Hence, we have an unboundedness property of dual
linear programs.
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Unboundedness Property.If the primal (dual) problem has an unbounded solution, then the dual (pri-
mal) problem is infeasible.

We are now in a position to give the main result of this section, the ‘‘strong duality’’ property. The
importance of this property is that it indicates that we may in fact solve the dual problem in place of or
in conjunction with the primal problem. The proof of this result depends merely on observing that the
shadow prices determined by solving the primal problem by the simplex method give a dual feasible solution,
satisfying the optimality property given above.

Strong Duality Property. If the primal (dual) problem has a finite optimal solution, then so does the
dual (primal) problem, and these two values are equal. That is,ẑ= v̂ where

ẑ= Max
n∑

j=1

c j x j , v̂ = Min
m∑

i=1

bi yi ,

subject to: subject to:

n∑
j=1

ai j x j ≤ bi ,

m∑
i=1

ai j yi ≥ c j ,

x j ≥ 0; yi ≥ 0.

Let us see how to establish this property. We can convert the primal problem to the equivalent equality
form by adding slack variables as follows:

Maximizez=
n∑

j=1

c j x j ,

subject to:

n∑
j=1

ai j x j + xn+i = bi (i = 1, 2, . . . , m),

x j ≥ 0 ( j = 1, 2, . . . , n+m).

Suppose that we have applied the simplex method to the linear program andx̂ j , j = 1, 2, . . . , n, is the resulting
optimal solution. Let̂yi , i = 1, 2, . . . , m, be the shadow prices associated with the optimal solution. Recall
that the shadow prices associated with the original constraints are the multiples of those constraints which,
when subtracted from the original form of the objective function, yield the form of the objective function in
the final tableau [Section 3.2, expression (11)]. Thus the following condition holds:

−z+
n∑

j=1

c j x j = −

m∑
i=1

bi ŷi , (15)

where, due to the optimality criterion of the simplex method, the reduced costs satisfy:

c j = c j −

m∑
i=1

ai j ŷi ≤ 0 ( j = 1, 2, . . . , n), (16)

and
c j = 0− ŷi ≤ 0 ( j = n+ 1, n+ 2, . . . , n+m). (17)
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Conditions (16) and (17) imply thatŷi , for i = 1, 2, . . . , m, constitutes a feasible solution to the dual problem.
Whenx j is replaced by the optimal valuêx j in expression (15), the term

n∑
j=1

c j x̂ j

is equal to zero, sincec j = 0 whenx̂ j is basic, and̂x j = 0 whenx̂ j is nonbasic. Therefore, the maximum
value ofz, sayẑ, is given by:

−ẑ= −
m∑

i=1

bi ŷi .

Moreover, sincêx j , for j = 1, 2, . . . , n, is an optimal solution to the primal problem,

n∑
j=1

c j x̂ j = ẑ=
m∑

i=1

bi ŷi .

This is theoptimality propertyfor the primal feasible solution̂x j , j = 1, 2, . . . , n, and the dual feasible
solution ŷi , i = 1, 2, . . . , m, so they are optimal for their respective problems. (The argument in terms of
the dual problem is analogous.)

It should be pointed out that it isnot true that if the primal problem is infeasible, then the dual problem
is unbounded. In this case the dual problem may be either unbounded or infeasible. All four combinations
of feasibility and infeasibility for primal and dual problems may take place. An example of each is indicated
in Table 4.2.

In example (2) of Table 4.2 it should be clear thatx2 may be increased indefinitely without violating
feasibility while at the same time making the objective function arbitrarily large. The constraints of the dual
problem for this example are clearly infeasible sincey1+ y2 ≥ 2 andy1+ y2 ≤ −1 cannot simultaneously
hold. A similar observation is made for example (3), except that the primal problem is now infeasible while
the dual variabley1 may be increased indefinitely. In example (4), the fact that neither primal nor dual
problem is feasible can be checked easily by multiplying the first constraint of each by minus one.

4.5 COMPLEMENTARY SLACKNESS

We have remarked that the duality theory developed in the previous section is a unifying theory relating the
optimal solution of a linear program to the optimal solution of the dual linear program, which involves the
shadow prices of the primal as decision variables. In this section we make this relationship more precise by
defining the concept of complementary slackness relating the two problems.

Complementary Slackness Property.If, in an optimal solution of a linear program, the value of the dual
variable (shadow price) associated with a constraint is nonzero, then that constraint must be satisfied with
equality. Further, if a constraint is satisfied with strict inequality, then its corresponding dual variable
must be zero.

For the primal linear program posed as a maximization problem with less-than-or-equal-to constraints,
this means:

i) if ŷi > 0, then
n∑

j=1

ai j x̂ j = bi ;

ii) if
n∑

j=1

ai j x̂ j < bi , thenŷi = 0.
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Table 4.2

1 Primal feasible Dual feasible

Maximizez= 2x1+ x2, Minimize v = 4y1+ 2y2,

subject to: subject to:
x1+ x2 ≤ 4,

x1− x2 ≤ 2,

x1 ≥ 0, x2 ≥ 0.

y1+ y2 ≥ 2,

y1− y2 ≥ 1,

y1 ≥ 0, y2 ≥ 0.

2 Primal feasible and unbounded Dual infeasible

Maximizez= 2x1+ x2, Minimize v = 4y1+ 2y2,

subject to: subject to:
x1− x2 ≤ 4,

x1− x2 ≤ 2,

x1 ≥ 0, x2 ≥ 0.

y1+ y2 ≥ 2,

−y1− y2 ≥ 1,

y1 ≥ 0, y2 ≥ 0.

3 Primal infeasible Dual feasible and unbounded

Maximizez= 2x1+ x2, Minimize v = −4y1+ 2y2,

subject to: subject to:
−x1− x2 ≤ −4,

x1 + x2 ≤ 2,

x1 ≥ 0, x2 ≥ 0.

−y1+ y2 ≥ 2,

−y1+ y2 ≥ 1,

y1 ≥ 0, y2 ≥ 0.

4 Primal infeasible Dual infeasible

Maximizez= 2x1+ x2, Minimize v = −4y1+ 2y2,

subject to: subject to:
−x1+ x2 ≤ −4,

x1− x2 ≤ 2,

x1 ≥ 0, x2 ≥ 0.

−y1+ y2 ≥ 2,

y1− y2 ≥ 1,

y1 ≥ 0, y2 ≥ 0.

We can show that the complementary-slackness conditions follow directly from the strong duality property
just presented. Recall that, in demonstrating the weak duality property, we used the fact that:

n∑
j=1

c j x̂ j ≤

m∑
i=1

n∑
j=1

ai j x̂ j ŷi ≤

m∑
i=1

bi ŷi (18)

for any x̂ j , j = 1, 2, . . . , n, andŷi , i = 1, 2, . . . , m, feasible to the primal and dual problems, respectively.
Now, since these solutions are not only feasible but optimal to these problems, equality must hold throughout.
Hence, considering the righthand relationship in (18), we have:

m∑
i=1

n∑
j=1

ai j x̂ j ŷi =

m∑
i=1

bi ŷi ,

which implies:

m∑
i=1

 n∑
j=1

ai j x̂ j − bi

 ŷi = 0.
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Since the dual variableŝyi are nonnegative and their coefficients

n∑
j=1

ai j x̂ j − bi

are nonpositive by primal feasibility, this condition can hold only if each of its terms is equal to zero; that is, n∑
j=1

ai j x̂ j − bi

 ŷi = 0 (i = 1, 2, . . . , m).

These latter conditions are clearly equivalent to (i) and (ii) above.
For the dual linear program posed as a minimization problem with greater-than-or-equal-to constraints,

the complementary-slackness conditions are the following:

iii) if x̂ j > 0, then
m∑

i=1

ai j yi = c j ,

iv) if
m∑

i=1

ai j ŷi > c j , thenx̂ j = 0.

These conditions also follow directly from the strong duality property by an argument similar to that given
above. By considering the lefthand relationship in (18), we can easily show that[

m∑
i=1

ai j yi − c j

]
x j = 0 ( j = 1, 2, . . . , n),

which is equivalent to (iii) and (iv).
The complementary-slackness conditions of the primal problem have a fundamental economic interpre-

tation. If the shadow price of thei th resource (constraint) is strictly positive in the optimal solutionŷi > 0,
then we should require that all of this resource be consumed by the optimal program; that is,

n∑
j=1

ai j x̂ j = bi .

If, on the other hand, thei th resource is not fully used; that is,
n∑

j=1

ai j x̂ j < bi ,

then its shadow price should be zero,ŷi = 0.
The complementary-slackness conditions of the dual problem are merely the optimality conditions for

the simplex method, where the reduced costc j associated with any variable must be nonpositive and is given
by

c j = c j −

m∑
i=1

ai j ŷi ≤ 0 ( j = 1, 2, . . . , n).

If x̂ j > 0, thenx̂ j must be a basic variable and its reduced cost is defined to be zero. Thus,

c j =

m∑
i=1

ai j ŷi .
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If, on the other hand,

c j −

m∑
i=1

ai j ŷi < 0,

thenx̂ j must be nonbasic and set equal to zero in the optimal solution;x̂ j = 0.
We have shown that the strong duality property implies that the complementary-slackness conditions

must hold for both the primal and dual problems. The converse of this also is true. If the complementary-
slackness conditions hold for both problems, then the strong duality property holds. To see this, letx̂ j , j =
1, 2, . . . , n, andŷi , i = 1, 2, . . . , m, be feasible solutions to the primal and dual problems, respectively. The
complementary-slackness conditions (i) and (ii) for the primal problem imply:

m∑
i=1

 n∑
j=1

ai j x̂ j − bi

 ŷi = 0,

while the complementary-slackness conditions (iii) and (iv) for the dual problem imply:

n∑
j=1

[
m∑

i=1

ai j ŷi − c j

]
x̂ j = 0.

These two equations together imply:

n∑
j=1

c j x̂ j =

m∑
i=1

n∑
j=1

ai j x̂ j ŷi =

m∑
i=1

bi ŷi ,

and hence the values of the primal and dual objective functions are equal. Since these solutions are feasible
to the primal and dual problems respectively, theoptimality propertyimplies that these solutions are optimal
to the primal and dual problems. We have, in essence, shown that the complementary-slackness conditions
holding for both the primal and dual problems is equivalent to thestrong duality property. For this reason,
the complementary-slackness conditions are often referred to as theoptimality conditions.

Optimality Conditions. If x̂ j , j = 1, 2, . . . , n, and ŷi , i = 1, 2, . . . , m, are feasible solutions to the
primal and dual problems, respectively, then they are optimal solutions to these problems if, and only if,
the complementary-slackness conditions hold for both the primal and the dual problems.

4.6 THE DUAL SIMPLEX METHOD

One of the most important impacts of the general duality theory presented in the previous section has been
on computational procedures for linear programming. First, we have established that the dual can be solved
in place of the primal whenever there are advantages to doing so. For example, if the number of constraints
of a problem is much greater than the number of variables, it is usually wise to solve the dual instead of the
primal since the solution time increases much more rapidly with the number of constraints in the problem
than with the number of variables. Second, new algorithms have been developed that take advantage of the
duality theory in more subtle ways. In this section we present the dual simplex method. We have already
seen the essence of the dual simplex method in Section 3.5, on righthand-side ranging, where the variable
transitions at the boundaries of each range are essentially computed by the dual simplex method. Further, in
Section 3.8, on parametric programming of the righthand side, the dual simplex method is the cornerstone of
the computational approach. In this section we formalize the general algorithm.
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Recall the canonical form employed in the simplex method:

x1 + a1,m+1xm+1+ · · · + a1,nxn = b1,

x2 + a2,m+1xm+1+ · · · + a2,nxn = b2,
. . .

...
...

...

xm+ am,m+1xm+1+ · · · + am,nxn= bm,

(−z) + cm+1xm+1+ · · · + cnxn = −z0.

The conditions forx1, x2, . . . , xm to constitute an optimal basis for a maximization problem are:

i) c j ≤ 0 ( j = 1, 2, . . . , n),

ii ) bi ≥ 0 (i = 1, 2, . . . , m).

We could refer to condition (i) as primal optimality (or equivalently, dual feasibility) and condition (ii) as
primal feasibility. In the primal simplex method, we move from basic feasible solution to adjacent basic
feasible solution, increasing (not decreasing) the objective function at each iteration. Termination occurs
when the primal optimality conditions are satisfied. Alternatively, we could maintain primal optimality (dual
feasibility) by imposing (i) and terminating when the primal feasibility conditions (ii) are satisfied. This latter
procedure is referred to as thedual simplex methodand in fact results from applying the simplex method
to the dual problem. In Chapter 3, on sensitivity analysis, we gave a preview of the dual simplex method
when we determined the variable to leave the basis at the boundary of a righthand-side range. In fact, the
dual simplex method is most useful in applications when a problem has been solved and a subsequent change
on the righthand side makes the optimal solution no longer primal feasible, as in the case of parametric
programming of the righthand-side values.

The rules of the dual simplex method are identical to those of the primal simplex algorithm, except for
the selection of the variable to leave and enter the basis. At each iteration of the dual simplex method, we
require that:

c j = c j −

m∑
i=1

yi ai j ≤ 0;

and sinceyi ≥ 0 for i = 1, 2, . . . , m, these variables are a dual feasible solution. Further, at each iteration
of the dual simplex method, the most negativebi is chosen to determine the pivot row, corresponding to
choosing the most positivec j to determine the pivot column in the primal simplex method.

Prior to giving the formal rules of the dual simplex method, we present a simple example to illustrate the
essence of the procedure. Consider the following maximization problem with nonnegative variables given
in Tableau 3. This problem is in ‘‘dual canonical form" since the optimality conditions are satisfied, but the
basic variables are not yet nonnegative.

Table 4.3

Basic Current
variables values x1 x2 x3 x4

x3 −1 −1 −1 1
← x4 −2 −2 −3 1

(−z) 0 −3 −1
↑

In the dual simplex algorithm, we are attempting to make all variables nonnegative. The procedure is
the opposite of the primal method in that it first selects the variable to drop from the basis and then the new
variable to introduce into the basis in its place. The variable to drop is the basic variable associated with
the constraint with the most negative righthand-side value; in this casex4. Next we have to determine the
entering variable. We select from only those nonbasic variables that have a negative coefficient in the pivot
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row, since then, after pivoting, the righthand side becomes positive, thus eliminating the primal infeasibility
in the constraint. If all coefficients are positive, then the primal problem is clearly infeasible, because the
sum of nonnegative terms can never equal the negative righthand side.

In this instance, both nonbasic variablesx1 andx2 are candidates. Pivoting will subtract some multiple,
sayt , of the pivot row containingx4 from the objective function, to give:

(−3+ 2t)x1+ (−1+ 3t)x2− t x4− z= 2t.

Since we wish to maintain the optimality conditions, we want the coefficient of each variable to remain
nonpositive, so that:

−3+ 2t ≤ 0 (that is, t ≤ 3
2),

−1+ 3t ≤ 0 (that is, t ≤ 1
3),

− t ≤ 0 (that is, t ≥ 0).

Settingt = 1
3 preserves the optimality conditions and identifies the new basic variable with a zero coefficient

in the objective function, as required to maintain the dual canonical form.
These steps can be summarized as follows: the variable to leave the basis is chosen by:

br = Min
i
{bi } = Min {−1,−2} = b2.

The variable to enter the basis is determined by the dual ratio test:

cs

ars
= Min

j

{
c j

ar j

∣∣∣∣ar j < 0

}
= Min

{
−3

−2
,
−1

−3

}
=

c2

a22
.

Pivoting inx2 in the second constraint gives the new canonical form in Tableau 4.

Table 4.4

Basic Current
variables values x1 x2 x3 x4

← x3 −
1
3 −

1
3 1 −

1
3

x2
2
3

2
3 1 −

1
3

(−z) 2
3 −

7
3 −

1
3
↑

Clearly,x3 is the leaving variable sinceb1 = −
1
3 is the only negative righthand-side coefficient; andx4 is

the entering variable sincec4/a14 is the minimum dualratio in the first row. After pivoting, the new canonical
form is given in Tableau 5

Table 4.5

Basic Current
variables values x1 x2 x3 x4

x4 1 1 −3 1

x2 1 1 1 −1

(−z) 1 −2 −1

Sincebi ≥ 0 for i = 1, 2, andc j ≤ 0 for j = 1, 2, . . . , 4, we have the optimal solution.
Following is a formal statement of the procedure. The proof of it is analogous to that of the primal

simplex method and is omitted.
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Dual Simplex Algorithm

STEP (0) The problem is initially in canonical form and allc j ≤ 0.

STEP (1) Ifbi ≥ 0, i = 1, 2, . . . , m, thenstop, we are optimal. If we continue, then
there exists somebi < 0.

STEP (2) Choose the row to pivot in (i.e., variable to drop from the basis) by:

br = Min
i

{
bi |bi < 0

}
.

If ar j ≥ 0, j = 1, 2, . . . , n, thenstop; the primal problem is infeasible (dual
unbounded). If we continue, then there existsar j < 0 for somej = 1, 2, . . . , n.

STEP (3) Choose columns to enter the basis by:

cs

ars
= Min

j

{
c j

ar j

∣∣∣∣ar j < 0

}
.

STEP (4) Replace the basic variable in rowr with variables and reestablish the canonical
form (i.e., pivot on the coefficientars).

STEP (5) Go to Step (1).

Step (3) is designed to maintainc j ≤ 0 at each iteration, and Step (2) finds the most promising candidate for
an improvement in feasibility.

4.7 PRIMAL-DUAL ALGORITHMS

There are many other variants of the simplex method. Thus far we have discussed only the primal and dual
methods. There are obvious generalizations that combine these two methods. Algorithms that perform both
primal and dual steps are referred to as primal-dual algorithms and there are a number of such algorithms. We
present here one simple algorithm of this form called theparametric primal-dual. It is most easily discussed
in an example.

x1 ≥ 0, x2 ≥ 0,

x1 + x2 ≤ 6,

−x1 + 2x2 ≤ −
1
2,

x1 − 3x2 ≤ −1,

−2x1 + 3x2 = z(max).

The above example can easily be put in canonical form by addition of slack variables. However, neither
primal feasibility nor primal optimality conditions will be satisfied. We will arbitrarily consider the above
example as a function of the parameterθ in Tableau 6.

Clearly, if we chooseθ large enough, this system of equations satisfies the primal feasibility and primal
optimality conditions. The idea of the parametric primal-dual algorithm is to chooseθ large initially so
that these conditions are satisfied, and attempt to reduceθ to zero through a sequence of pivot operations.
If we start withθ = 4 and letθ approach zero, primal optimality is violated whenθ < 3. If we were to
reduceθ below 3, the objective-function coefficient ofx2 would become positive. Therefore we perform a
primal simplex pivot by introducingx2 into the basis. We determine the variable to leave the basis by the
minimum-ratio rule of the primal simplex method:

br

ars
= Min

i

{
bi

ais

∣∣∣∣∣ais > 0

}
=

{
6

1
,

21
2

2

}
=

b2

a22
.

x4 leaves the basis and the new canonical form is then shown in Tableau 7.
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Tableau 6
Basic Current
variables values x1 x2 x3 x4 x5

x3 6 1 1 1
← x4 −

1
2 + θ −1 2 1

x5 −1+ θ 1 −3 1
(−z) 0 −2 (3− θ)

↑

Tableau 7

Basic Current
variables values x1 x2 x3 x4 x5

x3 61
4 −

1
2θ 3

2 1 −
1
2

x2 −
1
4 +

1
2θ −

1
2 1 1

2

← x5 −
7
4 +

5
2θ −

1
2

3
2 1

(−z) −(3− θ)(−1
4 +

1
2θ) (−1

2 −
1
2θ) (−3

2 +
1
2θ)

↑

The optimality conditions are satisfied for7
10 ≤ θ ≤ 3. If we were to reduceθ below 7

10, the righthand-
side value of the third constraint would become negative. Therefore, we perform a dual simplex pivot by
droppingx5 from the basis. We determine the variable to enter the basis by the rules of the dual simplex
method:

Min
j

{
c j

a3 j

∣∣∣∣a3 j < 0

}
=

{
−

1
2 +−

1
2θ

−
1
2

}
=

c1

a31
.

After the pivot is performed the new canonical form is given in Tableau 8.

Tableau 8

Basic Current
variables values x1 x2 x3 x4 x5

x3 1+ 7θ 1 4 3

x2
3
2 − 2θ 1 −1 −1

x1
7
2 − 5θ 1 −3 −2

(−z) −(3− θ)
(
−

1
4 +

1
2θ
)

(−3− θ) (−1− θ)

+(1
2 +

1
2θ)(7

2 − 5θ)

As we continue to decreaseθ to zero, the optimality conditions remain satisfied. Thus the optimal final
tableau for this example is given by settingθ equal to zero.

Primal-dual algorithms are useful when simultaneous changes of both righthand-side and cost coefficients
are imposed on a previous optimal solution, and a new optimal solution is to be recovered. When parametric
programming of both the objective-function coefficients and the righthand-side values is performed simulta-
neously, a variation of this algorithm is used. This type of parametric programming is usually referred to as
therim problem. (See Appendix B for further details.)

4.8 MATHEMATICAL ECONOMICS

As we have seen in the two previous sections, duality theory is important for developing computational
procedures that take advantage of the relationships between the primal and dual problems. However, there is
another less obvious area that also has been heavily influenced by duality, and that is mathematical economics.
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In the beginning of this chapter, we gave a preview of duality that interpreted the dual variables as shadow
prices imputed to the firm’s resources by allocating the profit (contribution) of the firm to its resources at
the margin. In a perfectly competitive economy, it is assumed that, if a firm could make profits in excess
of the value of its resources, then some other firm would enter the market with a lower price, thus tending
to eliminate these excess profits. The duality theory of linear programming has had a significant impact on
mathematical economics through the interpretation of the dual as the price-setting mechanism in a perfectly
competitive economy. In this section we will briefly sketch this idea.

Suppose that a firm may engage in anyn production activities that consume and/or producem resources
in the process. Letx j ≥ 0 be the level at which thej th activity is operated, and letc j be the revenue per
unit (minus means cost) generated from engaging in thej th activity. Further, letai j be the amount of the
i th resource consumed (minus means produced) per unit level of operation of thej th activity. Assume that
the firm starts with a position ofbi units of thei th resource and may buy or sell this resource at a price
yi ≥ 0 determined by an external market. Since the firm generates revenues and incurs costs by engaging in
production activities and by buying and selling resources, its profit is given by:

n∑
j=1

c j x j +

m∑
i=1

yi

bi −

n∑
j=1

ai j x j

 , (19)

where the second term includes revenues from selling excess resources and costs of buying additional re-
sources.

Note that ifbi >
∑n

j=1 ai j x j , the firm sellsbi −
∑n

j=1 ai j x j units of resourcesi to the marketplace at
a priceyi . If, however,bi <

∑n
j=1 ai j x j , then the firm buys

∑n
j=1 ai j x j − bi units of resourcei from the

marketplace at a priceyi .
Now assume that the market mechanism for setting prices is such that it tends to minimize the profits of

the firm, since these profits are construed to be at the expense of someone else in the market. That is, given
x j for j = 1, 2, . . . , n, the market reacts to minimize (19). Two consequences immediately follow. First,
consuming any resource that needs to be purchased from the marketplace, that is,

bi −

n∑
j=1

ai j x j < 0,

is clearly uneconomical for the firm, since the market will tend to set the price of the resource arbitrarily high
so as to make the firm’s profits arbitrarily small (i.e., the firm’s losses arbitrarily large). Consequently, our
imaginary firm will always choose its production activities such that:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m).

Second, if any resource were not completely consumed by the firm in its own production and therefore became
available for sale to the market, that is,

bi −

n∑
j=1

ai j x j > 0,

this ‘‘malevolent market" would set a price of zero for that resource in order to minimize the firm’s profit.
Therefore, the second term of (19) will be zero and the firm’s decision problem of choosing production
activities so as to maximize profits simply reduces to:

Maximize
n∑

j=1

c j x j ,
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subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m), (20)

x j ≥ 0 ( j = 1, 2, . . . , n),

the usual primal linear program.
Now let us look at the problem from the standpoint of the market. Rearranging (19) as follows:

n∑
j=1

(
c j −

m∑
i=1

ai j yi

)
x j +

m∑
i=1

bi yi , (21)

we can more readily see the impact of the firm’s decision on the market. Note that the term
∑m

i=1 ai j yi is
the market opportunity cost for the firm using the resourcesa1 j , a2 j , . . . , amj, in order to engage in thej th
activity at unit level. Again, two consequences immediately follow. First, if the market sets the prices so that
the revenue from engaging in an activity exceeds the market cost, that is,

c j −

m∑
i=1

ai j yi > 0,

then the firm would be able to make arbitrarily large profits by engaging in the activity at an arbitrarily high
level, a clearly unacceptable situation from the standpoint of the market. The market instead will always
choose to set its prices such that:

m∑
i=1

ai j yi ≥ c j ( j = 1, 2, . . . , n).

Second, if the market sets the price of a resource so that the revenue from engaging in that activity does not
exceed the potential revenue from the sale of the resources directly to the market, that is,

c j −

m∑
i=1

ai j yi < 0,

then the firm will not engage in that activity at all. In this latter case, the opportunity cost associated with
engaging in the activity is in excess of the revenue produced by engaging in the activity. Hence, the first term
of (21) will always be zero, and the market’s ‘‘decision" problem of choosing the prices for the resources so
as to minimize the firm’s profit reduces to:

Minimize
m∑

i=1

bi yi ,

subject to:

m∑
i=1

ai j yi ≥ c j ( j = 1, 2, . . . , n), (22)

yi ≥ 0 (i = 1, 2, . . . , m).

The linear program (22) is thedualof (20).
The questions that then naturally arise are ‘‘When do these problems have solutions?" and ‘‘What is the

relationship between these solutions?" In arriving at the firm’s decision problem and the market’s ‘‘decision"
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problem, we assumed that the firm and the market would interact in such a manner that an equilibrium would
be arrived at, satisfying: bi −

n∑
j=1

ai j x̂ j

 ŷi = 0 (i = 1, 2, . . . , m),

(23)(
c j −

m∑
i=1

ai j ŷi

)
x̂ j = 0 ( j = 1, 2, . . . , n).

These equations are just thecomplementary-slackness conditionsof linear programming. The first condition
implies that either theamountof resourcei that is unused (slack in thei th constraint of the primal) is zero, or
thepriceof resourcei is zero. This is intuitively appealing since, if a firm has excess of a particular resource,
then the market should not be willing to pay anything for the surplus of that resource since the maket wishes
to minimize the firm’s profit. There may be a nonzero market price on a resource only if the firm is consuming
all of that resource that is available. The second condition implies that either the amount of excess profit on
the j th activity (slack in thej th constraint of the dual) is zero or the level of activityj is zero. This is also
appealing from the standpoint of the perfectly competitive market, which acts to eliminate any excess profits.

If we had an equilibrium satisfying (23), then, by equating (19) and (21) for this equilibrium, we can
quickly conclude that the extreme values of the primal and dual problems are equal; that is,

n∑
j=1

c j x̂ j =

m∑
i=1

bi ŷi .

Observe that this condition has the usual interpretation for a firm operating in a perfectly competitive market.
It states that the maximum profit that the firm can make equals the market evaluation of its initial endowment
of resources. That is, the firm makes no excess profits. The important step is to answer the question of when
such equilibrium solutions exist. As we have seen, if the primal (dual) has a finite optimal solution, then so
does the dual (primal), and the optimal values of these objective functions are equal. This result is just the
strong duality property of linear programming.

4.9 GAME THEORY

The example of the perfectly competitive economy given in the previous section appears to be a game of
some sort between the firm and the malevolent market. The firm chooses its strategy to maximize its profits
while the market behaves (‘‘chooses" its strategy) in such a way as to minimize the firm’s profits. Duality
theory is, in fact, closely related to game theory, and in this section we indicate the basic relationships.

In many contexts, a decision-maker does not operate in isolation, but rather must contend with other
decision-makers with conflicting objectives. Consider, for example, advertising in a competitive market,
portfolio selection in the presence of other investors, or almost any public-sector problem with its multifaceted
implications. Each instance contrasts sharply with the optimization models previously discussed, since they
concern a single decision-maker, be it an individual, a company, a government, or, in general, any group
acting with a common objective and common constraints.

Game theory is one approach for dealing with these ‘‘multiperson" decision problems. It views the
decision-making problem as agamein which each decision-maker, orplayer, chooses astrategyor an action
to be taken. When all players have selected a strategy, each individual player receives apayoff. As an
example, consider the advertising strategies of a two-firm market. There are two players firm R (row player)
and firm C (column player). The alternatives open to each firm are its advertising possibilities; payoffs are
market shares resulting from the combined advertising selections of both firms. The payoff table in Tableau
9 summarizes the situation.
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Since we have assumed a two-firm market, firm R and firm C share the market, and firm C receives
whatever share of the market R does not. Consequently, firm R would like to maximize the payoff entry from
the table and firm B would like to minimize this payoff. Games with this structure are calledtwo-person,
zero-sum games. They arezero-sum, since the gain of one player is the loss of the other player.

To analyze the game we must make some behavioral assumptions as to how the players will act. Let us
suppose, in this example, that both players are conservative, in the sense that they wish to assure themselves
of their possible payoff level regardless of the strategy adopted by their opponent. It selecting its alternative,
firm R chooses a row in the payoff table. The worst that can happen from its viewpoint is for firm C to select
the minimum column entry in that row. If firm R selects its first alternative, then it can be assured of securing
30% of the market, but no more, whereas if it selects its second alternative it is assured of securing 10%, but
no more. Of course, firm R, wishing to secure as much market share as possible, will select alternative 1,
to obtain the maximum of these security levels. Consequently, it selects the alternative giving the maximum
of the column minimum, known as amaximinstrategy. Similarly, firm C’s security levels are given by the
maximum row entries; if it selects alternative 1, it can be assured of losing only 30% of the market, and no
more, and so forth. In this way, firm C is led to aminimaxstrategy of selecting the alternative that minimizes
its security levels of maximum row entries (see Tableau 10).

For the problem at hand, the maximin and minimax are both 30 and we say that the problem has a
saddlepoint. We might very well expect both players to select the alternatives that lead to this common
value—both selecting alternative 1. Observe that, by the way we arrived at this value, the saddlepoint is an
equilibriumsolution in the sense that neither player will move unilaterally from this point. For instance, if
firm R adheres to alternative 1, then firm C cannot improve its position by moving to either alternative 2 or 3
since then firm R’s market share increases to either 40% or 60%. Similarly, if firm C adheres to alternative 1,
then firm R as well will not be induced to move from its saddlepoint alternative, since its market share drops
to 20% if it selects alternative 2.

The situation changes dramatically if we alter a single entry in the payoff table (see Tableau 11).
Now the security levels for the two players do not agree, and moreover, given any choice of decisions

by the two firms, one of them can always improve its position by changing its strategy. If, for instance, both
firms choose alternative 1, then firm R increases its market share from 30% to 60% by switching to alternative
2. After this switch though, it is attractive for firm C then to switch to its second alternative, so that firm R’s
market share decreases to 10%. Similar movements will continue to take place as indicated by the arrows in
the table, and no single choice of alternatives by the players will be ‘‘stable".

Is there any way for the firms to do better in usingrandomized strategies? That is, instead of choosing
a strategy outright, a player selects one according to some preassigned probabilities. For example, suppose
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that firm C selects among its alternatives with probabilitiesx1, x2, andx3, respectively. Then the expected
market share of firm R is

30x1+ 40x2+ 60x3 if firm R selects alternative 1,

or
60x1+ 10x2+ 30x3 if firm R selects alternative 2.

Since any gain in market share by firm R is a loss to firm C, firm C wants to make the expected market
share of firm R as small as possible, i.e., maximize its own expected market share. Firm C can minimize the
maximum expected market share of firm R by solving the following linear program.

Minimize v,

subject to:
30x1 + 40x2+ 60x3− v ≤ 0,

60x1 + 10x2+ 30x3− v ≤ 0, (24)

x1 + x2+ x3 = 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The first two constraints limit firm R’s expected market share to be less than or equal tov for each of firm
R’s pure strategies. By minimizingv, from C limits the expected market share of firm R as much as possible.
The third constraint simply states that the chosen probabilities must sum to one. The solution to this linear
program isx1 =

1
2, x2 =

1
2, x3 = 0, andv = 35. By using a randomized strategy (i.e., selecting among

the first two alternatives with equal probability), firm C has improved its security level. Its expected market
share has increased, since the expected market share of firm R has decreased from 40 percent to 35 percent.

Let us now see how firm R might set probabilitiesy1 andy2 on its alternative selections to achieve its
best security level. When firm R weights its alternatives byy1 andy2, it has an expected market share of:

30y1+ 60y2 if firm C selects alternative 1,

40y1+ 10y2 if firm C selects alternative 2,

60y1+ 30y2 if firm C selects alternative 3.

Firm R wants its market share as large as possible, but takes a conservative approach in maximizing its
minimum expected market share from these three expressions. In this case, firm R solves the following linear
program:

Maximizew,

subject to:

30y1 + 60y2− w ≥ 0,

40y1 + 10y2− w ≥ 0,

60y1 + 30y2− w ≥ 0, (25)

y1 + y2 = 1,
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y1 ≥ 0, y2 ≥ 0.

The first three constraints require that, regardless of the alternative selected by firm C, firm R’s market share
will be at leastw, which is then maximized. The fourth constraint again states that the probabilities must
sum to one. In this case, firm R acts optimally by selecting its first alternative with probabilityy1 =

5
6 and

its second alternative with probabilityy2 =
1
6, giving an expected market share of 35 percent.

Note that the security levels resulting from each linear program are identical. On closer examination
we see that (25) is in fact the dual of (24)! To see the duality correspondence, first convert the inequality
constraints in (24) to the standard(≥) for a minimization problem by multiplying by−1. Then the dual
constraint derived from ‘‘pricing-out"x1, for example, will read−30y1 − 60y2 + w ≤ 0, which is the first
constraint in (25). In this simple example, we have shown that two-person, zero-sum games reduce to primal
and dual linear programs. This is true in general, so that the results presented for duality theory in linear
programming may be used to draw conclusions about two-person, zero-sum games. Historically, this took
place in the reverse, since game theory was first developed by John von Neumann in 1928 and then helped
motivate duality theory in linear programming some twenty years later.

General Discussion

The general situation for a two-person, zero-sum game has the same characteristics as our simple example.
The payoff table in Tableau 12 and the conservative assumption on the player’s behavior lead to the primal
and dual linear programs discussed below.

The column player must solve the linear program:

Minimize v,

subject to:
ai 1x1 + ai 2x2 + · · ·+ ainxn −v ≤ 0 (i = 1, 2, . . . , m),

x1 + x2 + · · ·+ xn = 1,

x j ≥ 0 ( j = 1, 2, . . . , n);

and the row player the dual linear program:

Maximizew,

subject to:
a1 j y1 + a2 j y2 + · · ·+ amnym −w ≥ 0 ( j = 1, 2, . . . , n),

y1 + y2 + · · ·+ ym = 1,

yi ≥ 0 (i = 1, 2, . . . , m).

The optimal values forx1, x2, . . . , xn, and y1, y2, . . . , ym, from these problems are the probabilities that
the players use to select their alternatives. The optimal solutions give(minv) = (maxw) and, as before,
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these solutions provide a stable equilibrium, since neither player has any incentive for improved value by
unilaterally altering its optimal probabilities.

More formally, if the row player uses probabilitiesyi and the column player uses probabilitiesx j , then
the expected payoff of the game is given by:

m∑
i=1

n∑
j=1

yi ai j x j .

By complementary slackness, the optimal probabilitiesŷi andx̂ j of the dual linear programs satisfy:

ŷi = 0 if
n∑

j=1

ai j x̂ j < v̂

and

ŷi = 0 only if
n∑

j=1

ai j x̂ j = v̂.

Consequently, multiplying thei th inequality in the primal bŷyi , and adding gives

m∑
i=1

n∑
j=1

ŷi ai j x̂ j =

m∑
i=1

ŷi v̂ = v̂, (26)

showing that the primal and dual solutionsx̂ j and ŷi lead to the payoff̂v. The last equality uses the fact that
the probabilitieŝyi sum to 1.

Next, consider any other probabilitiesyi for the row player. Multiplying thei th primal equation

n∑
j=1

ai j x̂ j ≤ v̂

by yi and adding, we find that:
m∑

i=1

n∑
j=1

yi ai j x̂ j ≤

m∑
i=1

yi v̂ = v̂. (27)

Similarly, multiplying the j th dual constraint

m∑
i=1

ŷi ai j ≥ ŵ

by any probabilitiesx j and adding gives:

m∑
i=1

n∑
j=1

ŷi ai j x j ≥

n∑
j=1

ŵx j = ŵ. (28)

Sincev̂ = ŵ by linear programming duality theory, Eqs. (26), (27), and (28) imply that:

m∑
i=1

n∑
j=1

yi ai j x̂ j ≤

m∑
i=1

n∑
j=1

ŷi ai j x̂ j ≤

m∑
i=1

n∑
j=1

ŷi ai j x j .

This expression summarizes the equilibrium condition. By unilaterally altering its selection of probabilities
ŷi to yi , the row player cannot increase its payoff beyondv̂.
Similarly, the column player cannotreducethe row player’s payoffbelow v̂ by unilaterally changingits
selection of probabilitieŝx j to x j . Therefore, the probabilitieŝyi andx̂ j acts as an equilibrium, since neither
player has an incentive to move from these solutions.
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EXERCISES

1. Find the dual associated with each of the following problems:

a) Minimizez= 3x1+ 2x2− 3x3+ 4x4,

subject to:

x1− 2x2+ 3x3+ 4x4 ≤ 3,

x2+ 3x3+ 4x4 ≥ −5,

2x1− 3x2− 7x3− 4x4 = 2,

x1 ≥ 0, x4 ≤ 0.

b) Maximizez= 3x1+ 2x2,

subject to:

x1+ 3x2 ≤ 3,

6x1− x2 = 4,

x1+ 2x2 ≤ 2,

x1 ≥ 0, x2 ≥ 0.

2. Consider the linear-programming problem:

Maximizez= 2x1+ x2+ 3x3+ x4,

subject to:

x1+ x2+ x3+ x4 ≤ 5,

2x1− x2+ 3x3 =−4,

x1 − x3 + x4 ≥ 1,

x1 ≥ 0, x3 ≥ 0, x2 andx4 unrestricted.

a) State this problem with equality constraints and nonnegative variables.
b) Write the dual to the given problem and the dual to the transformed problem found in part (a). Show that these

two dual problems are equivalent.

3. The initial and final tableaus of a linear-programming problems are as follows:

Initial Tableau

Basic Current
variables values x1 x2 x3 x4 x5 x6

x5 6 4 9 7 10 1
x6 4 1 1 3 40 1

(−z) 0 12 20 18 40

a) Find the optimal solution for the dual problem.
b) Verify that the values of the shadow prices are the dual feasible, i.e., that they satisfy the following relationship:

c j = c j −

m∑
i=1

ai j yi ≤ 0,

where the terms with bars refer to data in the final tableau and the terms without bars refer to data in the initial
tableau.
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Final Tableau

Basic Current
variables values x1 x2 x3 x4 x5 x6

x1
4
3 1 7

3
5
3

4
15 −

1
15

x4
1
15 −

1
30

1
30 1 −

1
150

2
75

(−z) −
56
3 −

20
3 −

10
3 −

44
15 −

4
15

c) Verify the complementary-slackness conditions.

4. In the second exercise of Chapter 1, we graphically determined the shadow prices to the following linear program:

Maximizez= 2x1+ x2,

subject to:

12x1 + x2 ≤ 6,

−3x1 + x2 ≤ 7,

x2 ≤ 10,

x1 ≥ 0, x2 ≥ 0.

a) Formulate the dual to this linear program.
b) Show that the shadow prices solve the dual problem.

5. Solve the linear program below as follows: First, solve the dual problem graphically. Then use the solution to the
dual problem to determine which variables in the primal problem are zero in the optimal primal solution. [Hint:
Invoke complementary slackness.] Finally, solve for the optimal basic variables in the primal, using the primal
equations.

Primal

Maximize − 4x2+ 3x3+ 2x4− 8x5,

subject to:

3x1 + x2 + 2x3 + x4 = 3,

x1 − x2 + x4 − x5 ≥ 2,

x j ≥ 0 ( j = 1, 2, 3, 4, 5).

6. A dietician wishes to design a minimum-cost diet to meet minimum daily requirements for calories, protein, car-
bohydrate, fat, vitamin A and vitamin B dietary needs. Several different foods can be used in the diet, with data as
specified in the following table.
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Content and costs per pound consumed

Food Food .... Food .... Food Daily
1 2 j n requirements

Calories a11 a12 a1 j a1n b1

Protein a21 a22 a2 j a2n b2
(grams)

Carbohydrate a31 a32 a3 j a3n b3
(grams)

Fat a41 a42 a4 j a4n b4
(grams)

VitaminA a51 a52 a5 j a5n b5
(milligrams)

VitaminB a61 a62 a6 j a6n b6
(milligrams)

Costs c1 c2 c j cn

(dollars)

a) Formulate a linear program to determine which foods to include in the minimum cost diet. (More than the
minimum daily requirements of any dietary need can be consumed.)

b) State the dual to the diet problem, specifying the units of measurement for each of the dual variables. Interpret
the dual problem in terms of a druggist who sets prices on the dietary needs in a manner to sell a dietary pill with
b1, b2, b3, b4, b5, andb6 units of the given dietary needs at maximum profit.

7. In order to smooth its production scheduling, a footwear company has decided to use a simple version of a linear
cost model for aggregate planning. The model is:

Minimize z=
N∑

i=1

T∑
t=1

(vi Xi t + ci I i t )+

T∑
t=1

(rWt + oOt ),

subject to:

Xi t + I i,t−1− I i t = di t

{
t = 1, 2, . . . , T
i = 1, 2, . . . , N

N∑
i=1

ki Xi t −Wt − Ot = 0 t = 1, 2, . . . , T

0 ≤ Wt ≤ (rm) t = 1, 2, . . . , T

−pWt + Ot ≤ 0 t = 1, 2, . . . , T

Xi t , I i t ≥ 0

{
i = 1, 2, . . . , N
t = 1, 2, . . . , T

with parameters:
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vi = Unit production cost for producti in each period,

ci = Inventory-carrying cost per unit of producti in each period,
r = Cost per man-hour of regular labor,

o = Cost per man-hour of overtime labor,

di t = Demand for producti in periodt ,

ki = Man-hours required to produce one unit of producti ,

(rm) = Total man-hours of regular labor available in each period,

p = Fraction of labor man-hours available as overtime,

T = Time horizon in periods,

N = Total number of products.

The decision variables are:
Xi t = Units of producti to be produced in periodt ,

I i t = Units of producti to be left over as inventory at the end of periodt ,

Wt = Man-hours of regular labor used during period (fixed work force),

Ot = Man-hours of overtime labor used during peirodt .

The company has two major products, boots and shoes, whose production it wants to schedule for the next three
periods. It costs $10 to make a pair of boots and $5 to make a pair of shoes. The company estimates that it costs $2
to maintain a pair of boots as inventory through the end of a period and half this amount for shoes. Average wage
rates, including benefits, are three dollars an hour with overtime paying double. The company prefers a constant
labor force and estimates that regular time will make 2000 man-hours available per period. Workers are willing
to increase their work time up to 25% for overtime compensation. The demand for boots and shoes for the three
periods is estimated as:

Period Boots Shoes

1 300 pr. 3000 pr.
2 600 pr. 5000 pr.
3 900 pr. 4000 pr.

a) Set up the model using 1 man-hour and1
2 man-hour as the effort required to produce a pair of boots and shoes,

respectively.
b) Write the dual problem.
c) Define the physical meaning of the dual objective function and the dual constraints.

8. In capital-budgeting problems within the firm, there is a debate as to whether or not the appropriate objective function
should be discounted. The formulation of the capital-budgeting problem without discounting is as follows:

MaximizevN,

subject to Shadow
prices

J∑
j=1

(−ci j x j ) ≤ fi (i = 0, 1, 2, . . . , N − 1)

J∑
j=1

(−cN j x j )+ vN ≤ fN , yN

0 ≤ x j ≤ u j ( j = 1, 2, . . . , J),
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whereci j is the cash outflow(ci j < 0) or inflow (ci j > 0) in periodi for project j ; the righthand-side constantfi
is the net exogenous funds made available to( fi > 0) or withdrawn from( fi < 0) a division of the firm in period
i ; the decision variablex j is the level of investment in projectj ; u j is an upper bound on the level of investment in
project j ; andvN is a variable measuring the value of the holdings of the division at the end of the planning horizon.

If the undiscounted problem is solved by the bounded variable simplex method, the optimal solution isx∗j for
j = 1, 2, . . . , J with associated shadow prices (dual variables)y∗i for i = 0, 1, 2, . . . , N.

a) Show thaty∗N = 1.
b) The discount factor for timei is defined to be the present value (timei = 0) of one dollar received at timei .

Show that the discount factor for timei , ρ∗i is given by:

ρ∗i =
y∗i
y∗0

(i = 0, 1, 2, . . . , N).

(Assume that the initial budget constraint is binding so thaty∗0 > 0.)
c) Why shouldρ∗0 = 1?

9. Thediscountedformulation of the capital-budgeting problem described in the previous exercise can be stated as:

Maximize
J∑

j=1

(
N∑

i=0

ρi ci j

)
x j ,

subject to Shadow
prices

J∑
j=1

(−ci j x j ) ≤ fi (i = 0, 1, 2, . . . , N), λi

0 ≤ x j ≤ u j ( j = 1, 2, . . . , J),

where the objective-function coefficient
N∑

i=0

ρi ci j

represents the discounted present value of the cash flows from investing at unit level in projectj , andλi for
i = 1, 2, . . . , N are the shadow prices associated with the funds-flow constraints.

Suppose that we wish to solve the above discounted formulation of the capital-budgeting problem, using the
discount factors determined by the optimal solution of the previous exercise, that is, setting:

ρi = ρ∗i =
y∗i
y∗0

(i = 0, 1, 2, . . . , N).

Show that the optimal solutionx∗j for j = 1, 2, . . . , J, determined from the undiscounted case in the previous
exercise, is also optimal to the above discounted formulation, assuming:

ρi = ρ∗i (i = 0, 1, 2, . . . , N).

[Hint: Write the optimality conditions for the discounted problem, using shadow-price valuesλ∗i = 0 for i =
1, 2, . . . , N. Doesx∗j ( j = 1, 2, . . . , J) satisfy these conditions? Do the shadow prices on the upper bounding
constraints for the discounted model differ from those of the undiscounted model?]
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10. An alternative formulation of the undiscounted problem developed in Exercise 8 is to maximize the totalearnings
on the projects rather than the horizon value. Earnings of a project are defined to be the net cash flow from a project
over its lifetime. The alternative formulation is then:

Maximize
J∑

j=1

(
N∑

i=0

ci j

)
x j ,

subject to Shadow
prices

J∑
j=1

(−ci j x j ) ≤ fi (i = 0, 1, 2, . . . , N), y′i

0 ≤ x j ≤ u j ( j = 1, 2, . . . , J).

Let x∗j for j = 1, 2, . . . , J solve this earnings formulation, and suppose that the funds constraints are binding at all
timesi = 0, 1, . . . , N for this solution.

a) Show thatx∗j for j = 1, 2, . . . , J also solves the horizon formulation given in Exercise 8.
b) Denote the optimal shadow prices of the funds constraints for the earnings formulation asy′i for i = 0, 1, 2, . . . , N.

Show thatyi = 1+ y′i for i = 0, 1, 2, . . . , N are optimal shadow prices for the funds constraints of the horizon
formulation.

11. Suppose that we now consider a variation of the horizon model given in Exercise 8, that explicitly includes one-period
borrowingbi at raterb and one-period lending̀i at rater`. The formulation is as follows:

MaximizevN,

subject to

Shadow
prices

J∑
j=1

(−c0 j x j )+ `0 − b0 ≤ f0, y0

J∑
j=1

(−ci j x j )− (1+ r`)`i−1+ `i + (1+ rb)bi−1− bi ≤ fi (i = 1, 2, . . . , N − 1), yi

J∑
j=1

(−cN j x j )− (1+ r`)`N−1+ (1− rb)bN−1+ vN ≤ fN , yN

bi ≤ Bi (i = 0, 1, . . . , N − 1), wi

0 ≤ x j ≤ u j ( j = 1, 2, . . . , J),

bi ≥ 0, `i ≥ 0 (i = 0, 1, . . . , N − 1).

a) Suppose that the optimal solution includes lending in every time period; that is,`∗i > 0 for i = 0, 1, . . . , N − 1.
Show that the present value of a dollar in periodi is

ρi =

(
1

1+ r`

)i

.

b) Suppose that there is no upper bound on borrowing; that is,Bi = +∞ for i = 0, 1, . . . , N − 1, and that the
borrowing rate equals the lending rate,r = rb = r`. Show that

yi−1

yi
= 1+ r,



Game Theory 165

and that the present value of a dollar in periodi is

ρi =

(
1

1+ r

)i

.

c) Letwi be the shadow prices on the upper-bound constraintsbi ≤ Bi , and letr = rb = r`. Show that the shadow
prices satisfy:

1+ r ≤
yi−1

yi
≤ 1+ r + wi−1.

d) Assume that the borrowing rate is greater than the lending rate,rb > r`; show that the firm will not borrow and
lend in the same period if it uses this linear-programming model for its capital budgeting decisions.

12. As an example of the present-value analysis given in Exercise 8, consider four projects with cash flows and upper
bounds as follows:

End of End of End of Upper
Project year 0 year 1 year 2 bound

A −1.00 0.60 0.60 ∞

B −1.00 1.10 0 500
C 0 −1.00 1.25 ∞

D −1.00 0 1.30 ∞

A negative entry in this table corresponds to a cash outflow and a positive entry to a cash inflow.

The horizon-value model is formulated below, and the optimal solution and associated shadow prices are given:

a) Explain exactly howoneadditional dollar at the end of year 2 would be invested to return the shadow price 1.25.
Similarly, explain how to use the projects in the portfolio to achieve a return of 1.35 for an additional dollar at
the end of year 0.

b) Determine the discount factors for each year, from the shadow prices on the constraints.
c) Find the discounted present value

∑N
i=0 ρi ci j of each of the four projects. How does the sign of the discounted

present value of a project compare with the sign of the reduced cost for that project? What is the relationship
between the two? Can discounting interpreted in this way be used for decision-making?

d) Consider the two additional projects with cash flows and upper bounds as follows:

End of End of End of Upper
Project year 0 year 1 year 2 bound

E −1.00 0.75 0.55 ∞

F −1.00 0.30 1.10 ∞

What is the discounted present value of each project? Both appear promising. Suppose that fun ds are transferred
from the current portfolio into projectE, will project F still appear promising? Why? Do the discount factors
change?
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13. In the exercises following Chapter 1, we formulated the absolute-value regression problem:

Minimize
m∑

i=1

|yi − xi 1β1− xi 2β2− · · · − xinβn|

as the linear program:

Minimize
m∑

i=1

(Pi + Ni ),

subject to:

xi 1β1+ xi 2β2+ · · · + xinβn + Pi − Ni = yi s for i = 1, 2, . . . , m,

Pi ≥ 0, Ni ≥ 0 for i = 1, 2, . . . , m.

In this formulation, theyi are measurements of the dependent variable (e.g., income), which is assumed to be
explained by independent variables (e.g., level of education, parents’ income, and so forth), which are measured as
xi 1, xi 2, . . . , xin . A linear model assumes thaty depends linearly upon theβ ’s, as:

ŷi = xi 1β1+ xi 2β2+ · · · + xinβn. (29)

Given any choice of the parametersβ1, β2, . . . , βn, ŷi is an estimate ofyi . The above formulation aims to minimize
the deviations of the estimates ofŷi from yi as measured by the sum of absolute values of the deviations. The
variables in the linear-programming model are the parametersβ1, β2, . . . , βn as well as thePi andNi . The quantities
yi , xi 1, xi 2, . . . , xin are known data found by measuring several values for the dependent and independent variables
for the linear model (29).

In practice, the number of observationsm frequently is much larger than the number of parametersn. Show
how we can take advantage of this property by formulating the dual to the above linear program in the dual variables
u1, u2, . . . , um. How can the special structure of the dual problem be exploited computationally?

14. The following tableau is in canonical form for maximizingz, except that one righthand-side value is negative.

Basic Current
variables values x1 x2 x3 x4 x5 x6

x1 14 1 2 3 −2
x2 6 1 1 −2 −2
x3 −10 1 −1 −2 0

(−z) −40 −1 −4 −2

However, the reduced costs of the nonbasic variables all satisfy the primal optimality conditions. Find the optimal
solution to this problem, using the dual simplex algorithm to find a feasible canonical form while maintaining the
primal optimality conditions.

15. In Chapter 2 we solved a two-constraint linear-programming version of a trailer-production problem:

Maximize 6x1+ 14x2+ 13x3,

subject to:

1
2x1+ 2x2+ 4x3 ≤ 24 (Metalworking capacity),

x1+ 2x2+ 4x3 ≤ 60 (Woodworking capacity),

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

obtaining an optimal tableau:
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Basic Current
variables values x1 x2 x3 x4 x5

x1 36 1 6 4 −1
x3 6 −1 1 −1 1

2

(−z) −294 −9 −11 −
1
2

Suppose that, in formulating this problem, we ignored a constraint limiting the time available in the shop for
inspecting the trailers.

a) If the solutionx1 = 36, x2 = 0, andx3 = 6 to the original problem satisfies the inspection constraint, is it
necessarily optimal for the problem when we impose the inspection constraint?

b) Suppose that the inspection constraint is

x1+ x2+ x3+ x6 = 30,

wherex6 is a nonnegative slack variable. Add this constraint to the optimal tableau withx6 as its basic variable
and pivot to eliminate the basic variablesx1 andx3 from this constraint. Is the tableau now in dual canonical
form?

c) Use the dual simplex method to find the optimal solution to the trailer-production problem with the inspection
constraint given in part (b).

d) Can the ideas used in this example be applied to solve a linear program whenever a new constraint is added after
the problem has been solved?

16. Apply the dual simplex method to the following tableau for maximizingz with nonnegative decision variables
x1, x2, . . . , x5.

Basic Current
variables values x1 x2 x3 x4 x5

x1 −3 1 −1 2 −2
x2 7 1 3 −4 8

(−z) −5 −1 −5 −6

Is the problem feasible? How can you tell?

17. Consider the linear program:

Minimize z= 2x1+ x2,

subject to:

−4x1+ 3x2− x3 ≥ 16,

x1+ 6x2+ 3x3 ≥ 12,

xi ≥ 0 for i = 1, 2, 3.

a) Write the associated dual problem.
b) Solve the primal problem, using the dual simplex algorithm.
c) Utilizing the final tableau from part (b), find optimal values for the dual variablesy1 and y2. What is the

corresponding value of the dual objective function?

18. For what values of the parameterθ is the following tableau in canonical form for maximizing the objective valuez?
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Basic Current
variables values x1 x2 x3 x4 x5

x1 −2+ θ 1 −1 2 −3
x2 1 1 1 0 1

(−z) −20 3− θ 4− θ −6

Starting with this tableau, use the parametric primal-dual algorithm to solve the linear program atθ = 0.

19. After solving the linear program:

Maximizez= 5x1+ 7x2+ 2x3,

subject to: 2x1+ 3x2+ x3+ x4 = 5,
1
2x1+ x2 + x5 = 1,

x j ≥ 0 ( j = 1, 2, . . . , 5),

and obtaining the optimal canonical form

Basic Current
variables values x1 x2 x3 x4 x5

x3 1 −1 1 1 −4

x1 2 1 2 0 2

(−z) −12 −1 −2 −2

we discover that the problem was formulated improperly. The objective coefficient forx2 should have been 11 (not
7) and the righthand side of the first constraint should have been 2 (not 5).

a) How do these modifications in the problem formulation alter the data in the tableau above?
b) How can we use the parametric primal-dual algorithm to solve the linear program after these data changes,

starting withx1 andx3 as basic variables?
c) Find an optimal solution to the problem after the data changes are made, using the parametric primal-dual

algorithm.

20. Rock, Paper, and Scissors is a game in which two players simultaneously reveal no fingers (rock), one finger (paper),
or two fingers (scissors). The payoff to player 1 for the game is governed by the following table:

Note that the game is void if both players select the same alternative: otherwise, rock breaks scissors and wins,
scissors cut paper and wins, and paper covers rock and wins.

Use the linear-programming formulation of this game and linear-programming duality theory, to show that both
players’ optimal strategy is to choose each alternative with probability1

3.

21. Solve for an optimal strategy for both player 1 and player 2 in a zero-sum two-person game with the following
payoff table:

Is the optimal strategy of each player unique?
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22. In a game of tic-tac-toe, the first player has three different choices at the first move: the center square, a corner
square, or a side square. The second player then has different alternatives depending upon the move of the first
player. For instance, if the first player chooses a corner square, the second player can select the center square, the
opposite corner, an adjacent corner, an opposite side square, or an adjacent side square. We can picture the possible
outcomes for the game in a decision tree as follows:

Figure E4.1

Nodes h1 correspond to decision points for the first player; nodesh2 are decision points for the second player.
The tree is constructed in this manner by considering the options available to each player at a given turn, until either
one player has won the game (i.e., has selected three adjacent horizontal or vertical squares or the squares along one
of the diagonals), or all nine squares have been selected. In the first case, the winning player receives 1 point; in the
second case the game is a draw and neither player receives any points.

The decision-tree formulation of a game like that illustrated here is called anextensive formformulation. Show
how the game can be recast in the linear-programming form (called anormal form) discussed in the text. Do not
attempt to enumerate every strategy for both players. Just indicate how to construct the payoff tables.

[Hint: Can you extract a strategy for player 1 by considering his options at each decision point? Does his
strategy depend upon how player 2 reacts to player 1’s selections?]
The remaining exercises extend the theory developed in this chapter, providing new results and relating some of the
duality concepts to other ideas that arise in mathematical programming.
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23. Consider a linear program with bounded variables:

Maximizez=
n∑

j=1

c j x j ,

subject to: Dual
variables

n∑
j=1

ai j x j = bi (i = 1, 2, . . . , m), yi

x j ≤ u j ( j = 1, 2, . . . , n), w j

x j ≥ 0 ( j = 1, 2, . . . , n),

where the upper boundsu j are positive constants. Letyi for i = 1, 2, . . . , mandw j for j = 1, 2, . . . , mbe variables
in the dual problem.

a) Formulate the dual to this bounded-variable problem.
b) State the optimality conditions (that is, primal feasibility, dual feasibility, and complementary slackness) for the

problem.
c) Letc j = c j−

∑m
i=1 yi ai j denote the reduced costs for variablex j determined by pricing out theai j constraints and

not the upper-bounding constraints. Show that the optimality conditions are equivalent to the bounded-variable
optimality conditions

c j ≤ 0 if x j = 0,

c j ≥ 0 if x j = u j ,

c j = 0 if 0 < x j < u j ,

given in Section 2.6 of the text, for any feasible solutionx j ( j = 1, 2, . . . , n) of the primal problem.

24. Letx∗j for j = 1, 2, . . . , n be an optimal solution to the linear program with

Maximize
n∑

j=1

c j x j ,

subject to: Shadow
prices

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m), yi

n∑
j=1

ei j x j ≤ di (i = 1, 2, . . . , q), wi

x j ≥ 0 ( j = 1, 2, . . . , n),

two groups of constraints, theai j constraints and theei j constraints. Letyi for i = 1, 2, . . . , m and wi for
i = 1, 2, . . . , q denote the shadow prices (optimal dual variables) for the constraints.

a) Show thatx∗j for j = 1, 2, . . . , n also solves the linear program:

Maximize
n∑

j=1

[
c j −

m∑
i=1

yi ai j

]
x j ,

subject to:

n∑
j=1

ei j x j ≤ di (i = 1, 2, . . . , q),

x j ≥ 0 ( j = 1, 2, . . . , n),
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in which theai j constraints have been incorporated into the objective function as in the method of Lagrange
multipliers. [Hint: Apply the optimality conditions developed in Section 4.5 to the original problem and this
‘‘Lagrangian problem.’’]

b) Illustrate the property from part (a) with the optimal solutionx∗1 = 2, x∗2 = 1, and shadow pricesy1 =
1
2, w1 =

1
2, w2 = 0, to the linear program:

Maximizex1,

subject to:

x1+ x2 ≤ 3 [ai j constraint],

x1− x2 ≤ 1
x2 ≤ 2

}
[ei j constraints],

x1 ≥ 0, x2 ≥ 0.

c) Show that an optimal solutionx j for j = 1, 2, . . . , n for the ‘‘Lagrangian problem’’ from part (a) need not be
optimal for the original problem [see the example in part (b)]. Under what conditions is an optimal solution to
the Lagrangian problem optimal in the original problem?

d) We know that if the ‘‘Lagrangian problem’’ has an optimal solution, then it has an extreme-point solution. Does
this imply that there is an extreme point to the Lagrangian problem that is optimal in the original problem?

25. The payoff matrix(ai j ) for a two-person zero-sum game is said to beskew symmetricif the matrix has as many rows
as columns andai j = −a j i for each choice ofi and j . The payoff matrix for the game Rock, Paper and Scissors
discussed in Exercise 20 has this property.

a) Show that if players 1 and 2 use the same strategy,

x1 = y1, x2 = y2, . . . , xn = yn,

then the payoff
n∑

i=1

n∑
j=1

yi ai j x j

from the game is zero.
b) Given any strategyx1, x2, . . . , xn for player 2, i.e., satisfying:

a11x1 + a12x2 + · · · + a1nxn ≥ w,

a21x1 + a22x2 + · · · + a2nxn ≥ w,
...

...

an1x1 + an2x2 + · · · + annxn ≥ w,

x1 + x2 + · · · + xn = 1,

multiply the first n constraints byy1 = x1, y2 = x2, . . . , and yn = xn, respectively, and add. Use this
manipulation, together with part (a), to show thatw ≤ 0. Similarly, show that the value to the player 1 problem
satisfiesv ≥ 0. Use linear-programming duality to conclude thatv = w = 0 is the value of the game.

26. In Section 4.9 we showed how to use linear-programming duality theory to model the column and row players’
decision-making problems in a zero-sum two-person game. We would now like to exhibit a stronger connection
between linear-programming duality and game theory.

Consider the linear-programming dual problems

Maximizez=
n∑

j=1

c j x j , Minimize w =

m∑
i=1

yi bi ,
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subject to: subject to

n∑
j=1

ai j x j ≤ bi ,

m∑
i=1

yi ai j ≥ c j ,

x j ≥ 0, yi ≥ 0,

where the inequalities apply fori = 1, 2, . . . , m and j = 1, 2, . . . , n; in addition, consider a zero-sum two-person
game with the following payoff table:

y1 y2 · · · ym x1 x2 · · · xm t

0 0 · · · 0 a11 a12 · · · a1n −b1
0 0 · · · 0 a21 a22 · · · a2n −b2
...

...
...

0 0 · · · 0 am1 am2 · · · amn −bm

−a11 −a21 · · · −am1 0 0 · · · 0 c1
−a12 −a22 · · · −am2 0 0 · · · 0 c2

...
...

...

−a1n −a2n · · · −amn 0 0 · · · 0 cn

b1 b2 · · · bm −c1 −c2 · · · −cn 0

The quantitiesx j , yi , andt shown above the table are the column players’ selection probabilities.

a) Is this game skew symmetric? What is the value of the game? (Refer to the previous exercise.)
b) Suppose thatx j for j = 1, 2, . . . , n andyi for i = 1, 2, . . . , m solve the linear-programming primal and dual

problems. Let

t =
1∑n

j=1 x j +
∑m

i=1 yi + 1
,

let x j = t x j for j = 1, 2, . . . , n, and letyi = tyi for i = 1, 2, . . . , m. Show thatx j , yi , andt solve the given
game.

c) Let x j for j = 1, 2, . . . , n, yi for i = 1, 2, . . . , m, andt solve the game, and suppose thatt > 0. Show that

x j =
x j

t
andyi =

yi

t

solve the primal and dual linear programs. (SeeHint.)
[Hint: Use the value of the game in parts (b) and (c), together with the conditions for strong duality in linear
programming.]

27. Suppose we approach the solution of the usual linear program:

Maximize
n∑

j=1

c j x j ,

subject to:
n∑

j=1

ci j x j ≤ bi (i = 1, 2, . . . , m), (30)

x j ≥ 0 ( j = 1, 2, . . . , n),

by the method of Lagrange multipliers. Define the Lagrangian maximization problem as follows:

L(λ1, λ2, . . . , λm) = Maximize


n∑

j=1

c j x j −

m∑
i=1

λi

 n∑
j=1

ci j x j − bi





Game Theory 173

subject to:
x j ≥ 0 ( j = 1, 2, . . . , n).

Show that the dual of (30) is given by:

Minimize L(λ1, λ2, . . . , λm),

subject to:
λi ≥ 0 (i = 1, 2, . . . , m).

[Note: The Lagrangian functionL(λ1, λ2, . . . , λm) may equal+∞ for certain choices of the Lagrange multipliers
λ1, λ2, . . . , λm. Would these values for the Lagrange multipliers ever be selected when minimizingL(λ1, λ2, . . . , λm)?]

28. Consider the bounded-variable linear program:

Maximize
n∑

j=1

c j x j ,

subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m),

` j ≤ x j ≤ u j ( j = 1, 2, . . . , n).

Define the Lagrangian maximization problem by:

L(λ1, λ2, . . . , λm) = Maximize


n∑

j=1

c j x j −

m∑
i=1

λi

 n∑
j=1

ai j x j − bi


subject to:

` j ≤ x j ≤ u j ( j = 1, 2, . . . , n).

Show that the primal problem is bounded above byL(λ1, λ2, . . . , λm) so long asλi ≥ 0 for i = 1, 2, . . . , m.

29. Consider the bounded-variable linear program and the corresponding Lagrangian maximization problem defined in
Exercise 28.

a) Show that:

Maximize
n∑

j=1

c j x j = MinimizeL(λ1, λ2, . . . , λm),

subject to: subject to

n∑
j=1

ai j x j ≤ bi , λi ≥ 0,

` j ≤ x j ≤ u j , ,

which is a form of strong duality.
b) Why is it thatL(λ1, λ2, . . . , λm) in this case does not reduce to the usual linear-programming dual problem?

30. Suppose that we define the function:

f (x1, x2, . . . , xn; y1, y2, . . . , ym) =

n∑
j=1

c j x j −

m∑
i=1

n∑
j=1

ai j x j y j +

m∑
i=1

bi yi .
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Show that the minimax property

Max
x j≥0

Min
y j≥0

f (x1, . . . , xn; y1, . . . , ym) = Min
y j≥0

Max
x j≥0

f (x1, . . . , xn; y1, . . . , ym)

implies the strong duality property.
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