Homework 4 Convex Optimization

- 1. (a) (3 points) Show that $||\mathbf{x}||^2$ is smooth with parameter 2.
 - (b) (3 points) Let *f* be a smooth function with parameter *L* and let g := f (Ax + b). Show that g is smooth with parameter L · ||A||² where ||A|| := sup_{||x||=1} ||Ax|| is the *spectral norm* of A.
 - (c) (2 points) Deduce that $||Ax b||^2$ is smooth. What is the corresponding parameter?
 - (d) (2 points) Give the convergence rate of gradient descent when applied to minimize $||Ax b||^2$ i.e. the number of iterations to decrease the error to ϵ .
- 2. **Sparse Recovery**. The set-up is as follows. There is an unknown vector $\beta \in \mathbb{R}^p$. We get n noisy linear measurements of β : $y_i = x_i^T \beta + e_i, i = 1, ..., n$. We write this in matrix notation: $y = X\beta + e$. Here we have n < p. Typically, this means that the problem is under-determined: there are more unknowns than constraints. However, it turns out that if β is *sparse* i.e. has very few non-zero components, then it is possible to solve this. In this problem you will explore solving this problem when β is sparse. Download the given files that will generate the data for three sparse-recovery problems of different sizes. For each problem, we provide: (X, y) these data specify the problem, and you will use them to compute β . We also provide testing data, (X_{test}, y_{test}) . Once you have computed β , you will use the testing data to see how well you did, by computing: $||X_{test}\beta y_{test}||_2$. The files provided also give the parameter λ which is used by the optimization problem specified below as Algorithm 2 (Lasso).

Use the CVXPY (https://www.cvxpy.org) environment.

(a) (5 points) Algorithm 1: Least Squares. Compute a least-squares solution to the problem by solving:

minimize :
$$||X\beta - y||_2$$
.

Figure out how to solve this problem using CVX. Ask CVX to solve each of the three problems, and report: (a) Did CVX succeed? (b) If so, how long did it take to solve each instance? (c) Report the Regression error of the solution computed: $||X\beta^* - y||_2$ and also the Testing error: $||X_{test}\beta - y_{test}||_2$.

(b) (5 points) Algorithm 2: LASSO.

minimize : $||X\beta - y||_2 + \lambda ||\beta||_1$.

Ask CVX to solve each of the three problems, and report: (a) Did CVX succeed? (b) If so, how long did it take to solve each instance? (c) Report the Regression error of the solution computed: $||X\beta^* - y||_2$ and also the Testing error: $||X_{test}\beta - y_{test}||_2$. (d) What is the support of β i.e., what are the non-zero coefficients of β ?.