Homework 4 Convex Optimization

1. (a) (3 points) Show that $\|\mathbf{x}\|^{2}$ is smooth with parameter 2 .
(b) (3 points) Let f be a smooth function with parameter L and let $g:=f(A x+b)$. Show that g is smooth with parameter $L \cdot\|A\|^{2}$ where $\|A\|:=\sup _{\|x\|=1}\|A x\|$ is the spectral norm of A.
(c) (2 points) Deduce that $\|A x-b\|^{2}$ is smooth. What is the corresponding parameter?
(d) (2 points) Give the convergence rate of gradient descent when applied to minimize $\|A x-b\|^{2}$ i.e. the number of iterations to decrease the error to ϵ.
2. Sparse Recovery. The set-up is as follows. There is an unknown vector $\beta \in R^{p}$. We get n noisy linear measurements of $\beta: y_{i}=x_{i}^{T} \beta+e_{i}, i=1, \ldots, n$. We write this in matrix notation: $y=X \beta+e$. Here we have $n<p$. Typically, this means that the problem is under-determined: there are more unknowns than constraints. However, it turns out that if β is sparse i.e. has very few non-zero components, then it is possible to solve this. In this problem you will explore solving this problem when β is sparse. Download the given files that will generate the data for three sparse-recovery problems of different sizes. For each problem, we provide: (X, y) - these data specify the problem, and you will use them to compute β. We also provide testing data, ($X_{\text {test }}, y_{\text {test }}$). Once you have computed β, you will use the testing data to see how well you did, by computing: $\left\|X_{\text {test }} \beta-y_{\text {test }}\right\|_{2}$. The files provided also give the parameter λ which is used by the optimization problem specified below as Algorithm 2 (Lasso).
Use the CVXPY (https://www. cvxpy .org) environment.
(a) (5 points) Algorithm 1: Least Squares. Compute a least-squares solution to the problem by solving:

$$
\text { minimize : }\|X \beta-y\|_{2} .
$$

Figure out how to solve this problem using CVX. Ask CVX to solve each of the three problems, and report: (a) Did CVX succeed? (b) If so, how long did it take to solve each instance? (c) Report the Regression error of the solution computed: $\left\|X \beta^{*}-y\right\|_{2}$ and also the Testing error: $\left\|X_{\text {test }} \beta-y_{\text {test }}\right\|_{2}$.
(b) (5 points) Algorithm 2: LASSO.

$$
\text { minimize : }\|X \beta-y\|_{2}+\lambda\|\beta\|_{1} .
$$

Ask CVX to solve each of the three problems, and report: (a) Did CVX succeed? (b) If so, how long did it take to solve each instance? (c) Report the Regression error of the solution computed: $\left\|X \beta^{*}-y\right\|_{2}$ and also the Testing error: $\left\|X_{\text {test }} \beta-y_{\text {test }}\right\|_{2}$. (d) What is the support of β i.e., what are the non-zero coefficients of β ?.

